简单记录一下安装过程,由于ubuntu截图不太方便,记录的图少一些,有好的ubuntu截图方法和对文章的意见、建议欢迎推荐给我,微信号yudajiangshan。
首先,打开github安装指南:https://github.com/FederatedAI/FATE/blob/master/standalone-deploy/doc/Fate-standalone_deployment_guide_zh.md
这里需要注意的是,至少是8G以上内存的电脑,操作系统可以是ubuntu.
一. docker版本顺着安装指南安装即可,一般无问题。
二. 裸机版
1. 检查本地8080、9360、9380端口是否被占用。
netstat -apln|grep 8080
netstat -apln|grep 9360
netstat -apln|grep 9380
2. 下载独立版本的压缩包并解压缩。
wget https://webank-ai-1251170195.cos.ap-guangzhou.myqcloud.com/standalone_fate_master_1.5.1.tar.gz
tar -xzvf standalone_fate_master_1.5.1.tar.gz
3. 进入FATE目录并执行init.sh。standalone_fate_master_1.5.1文件夹名称太长,此处可对其进行重命名,比如重命名为fate-1.5,本文截图显示了重命名后的项目名称,但代码跟github保持一致
cd standalone_fate_master_1.5.1
sh init.sh init
4. 可能会有错误,一般来说为python找不到解释器的原因,此时用pycharm打开项目,首先配置python解释器:点击pycharm最上面的菜单Files->Settings->Project: fate-1.5->Python Interpreter,然后点击右侧小齿轮,然后选择“Add”,看起是否能自动识别,不能自动识别的话,选择项目自带的解释器“fate-1.5/miniconda3-fate/bin/python”
这个时候,用pycharm打开fate-1.5/python/fate_flow/fate_flow_server.py文件,发现导出ate-1.5/python里面的包错误,因为ate-1.5/python目录不在搜索目录里面,这时候,在pycharm左侧项目结构目录里选中python目录,然后右键,选择Make Directory as->Sources Root,然后过一段时间,pycharm应该能够识别python目录里的各模块
做完这一步后,建议关闭pycharm,然后再打开fate项目,即重启项目,这是因为python解释器也需要更新,这样就可以把以上的过程刷新一遍。
此时再去执行命令:
sh init.sh init
如果还有问题,请看看是否卡在python/fate_flow/service.sh脚本,正确的运行结果如下,请特别关注行“PROJECT_BASE: /home/liutf/openPj/fate-1.5”及以下的所有内容,这些内容是service.sh脚本输出的结果,最后显示,我成功的启动了fateboard.jar,用到9380和9360两个端口,这是为训练推理可视化服务的,稍后展示其前端
如果上面没有运行成功,可能需要自己先单独运行fate-1.5/bin/init_env.sh,即:
sudo source bin/init_env.sh
可能会提示source: command not found
参考https://www.cnblogs.com/davygeek/p/6218582.html进行解决
#ls -l `which sh`
# /bin/sh -> dash
发现, 脚本中默认使用的sh其实对应的是dash, 而不是bash。 为了解决这个错误就需要把这个对应关系修改下, 让sh对应到bash执行以下命令, 在弹出的框里面选择No即可把sh对应的链接修改成bash
#sudo dpkg-reconfigure dash
//选择否就可以修改对应的关系, 修改完成之后再执行ls -l `which sh`就可以看到, 对应关系已经修改过来了, 可以正常的执行脚本了
5. 测试
- 单元测试
cd standalone_fate_master_1.5.1
sudo source bin/init_env.sh # 如果上面已经通过了,此处不需要运行了
bash ./python/federatedml/test/run_test.sh
如果成功,屏幕显示类似下方的语句:
there are 0 failed test
- Toy测试
cd standalone_fate_master_1.5.1
source bin/init_env.sh
python ./examples/toy_example/run_toy_example.py 10000 10000 0
如果成功,屏幕显示类似下方的语句:
success to calculate secure_sum, it is 2000.0
5.安装FATE-Client和FATE-Test
为方便使用FATE,我们提供了便捷的交互工具FATE-Client以及测试工具FATE-Test.
请在环境内使用以下指令安装:
python -m pip install fate-client
python -m pip install fate-test
有些用例算法在 examples 文件夹下, 请尝试使用。
通过浏览器体验算法过程看板,访问:Http://localhost:8080 前端效果如下(本人另一台电脑的docker版本,显示为2月份的训练记录):
登陆后,请点击右侧JOBS按钮,然后就可以看到已进行的测试或训练:
更多fate学习:
- 知乎联邦学习专栏:https://www.zhihu.com/column/c_1201829960685584384
- 官方文档:https://github.com/FederatedAI/DOC-CHN
- 哔哩哔哩官方:https://space.bilibili.com/457797601?from=search&seid=2497480409776506285
- fate官方学习交流群,可以加我微信,群人数较多拉进群,我的微信是yudajiangshan