程序员面试宝典第4版第8章题目。
题目:输入n 求一个n*n的矩阵,规定矩阵沿45度角线递增,
形成一个zigzag数组,请问如何用C++实现
如图:
Please Input The Number!
8
分析:
(1)发现矩阵上三角和下三角的和为N^2-1,即a[i][j]+a[n-i-1][n-j-1]=N^2-1,所以只要计算出上三角就可以推出下三角的值了。
(2)在上三角中,位于同一条斜线的数的横坐标和纵坐标加起来都相等。比如1(坐标为(1,0)),2(坐标为(0,1)),横坐标和纵坐标加起来都为1,同理3、4、5的坐标和相等。记s=i+j表示横纵坐标和。同时可以发现,坐标和为s的数共有s+1个:
s=0 0
s=1 1 2
s=2 3 4 5
....
当坐标和为s时,前面共有1+2+...+(s)=s*(s+1)/2个数。
那么在s这个斜线中,数是如何分布的呢?
这个根据s是奇偶数有所不同,当s%2==0时,斜线中的数从上到下递减,所以a[i][j]=s*(s+1)/2+j,否则,a[i][j]=s*(s+1)+i。
下面是具体代码:
#include "stdafx.h"
#include<stdio.h>
#include<iostream>
using namespace std;
int main()
{
int n;
int s, i, j;
int squa;
cin >> n;
int **a = (int **)malloc(n*sizeof(int));
if (a == NULL)
return 0;
for (i = 0; i < n; ++i)
{
if ((a[i] = (int *)malloc(n*sizeof(int))) == NULL)
{
while (--i >= 0)
{
free(a[i]);
free(a);
return 0;
}
}
}
for (i = 0; i < n; ++i)
{
for (j = 0; j < n - i; ++j)
{
s = i + j;
a[i][j] = s*(s + 1) / 2 + (s % 2 == 0 ? j : i);
}
}
squa = n*n;
for (i = 1; i < n; ++i)
{
for (j = n - i; j < n; ++j)
{
a[i][j] = squa-1-a[n - i - 1][n - j - 1];
}
}
for (i = 0; i < n; ++i)
{
for (j = 0; j < n; ++j)
cout << a[i][j]<<" ";
cout << endl;
}
return 0;
}
另一种实现:
#include "stdafx.h"
#include<stdio.h>
#include<iostream>
using namespace std;
int main()
{
int n;
int s, i, j;
int squa;
cin >> n;
int **a = (int **)malloc(n*sizeof(int));
if (a == NULL)
return 0;
for (i = 0; i < n; ++i)
{
if ((a[i] = (int *)malloc(n*sizeof(int))) == NULL)
{
while (--i >= 0)
{
free(a[i]);
free(a);
return 0;
}
}
}
squa = n*n;
for (i = 0; i < n; ++i)
{
for (j = 0; j < n; ++j)
{
s = i + j;
if (s < n)
{
a[i][j] = s*(s + 1) / 2 + ((i + j) % 2 == 0 ? j : i);
}
else
{
s = (n - 1 - i) + (n - 1 - j);
a[i][j] = squa - s*(s + 1) / 2 - (n - (((i + j) % 2 == 0) ? j : i));
}
}
}
for (i = 0; i < n; ++i)
{
for (j = 0; j < n; ++j)
cout << a[i][j]<<" ";
cout << endl;
}
return 0;
}
参考:
http://www.ithao123.cn/content-67378.html
http://blog.sina.com.cn/s/blog_4979ec3e01018blm.html