动规A - Alphabet 、M - Zigzag

本文详细解析了两道经典算法题目:A-Alphabet和M-Zigzag。A-Alphabet题旨在寻找最长递增字母子序列,以确定添加最少字母数使字符串变为完整字母表。M-Zigzag题则关注于如何在一系列数字中找到最长的锯齿形序列,即连续递增和递减的序列。文章提供了清晰的问题描述、分析思路及AC代码实现。
摘要由CSDN通过智能技术生成

A - Alphabet

题目描述

在这里插入图片描述

问题分析

题目不难理解,给定一串由26个英文字母组成的字符串,让求在可以删除字母的的情况下最少要添加多少个字母才可以按顺序组成26个英文字母。
原字母不能移动,只能删除。
思路:找一个最长的递增字母字符串,用26减去该字符串的长度。

AC代码

题目很简单,直接上代码

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
int max(int x, int y)//用C写的max函数,C++中可直接用max
{
    return x > y ? x : y;
}
int a[100];
int main()
{
    char s[100];
    scanf("%s", s);
    int l = strlen(s);
    for (int i = 0; i < l; i++)
    {
        for (int j = 0; j <= i; j++)
        {
            if (s[j] < s[i])
                a[i] = max(a[i], a[j] + 1);
        }
        if (a[i] == 0)a[i] = 1;
    }
    int sum = 0;
    for (int i = 0; i < l; i++)
        sum = max(sum, a[i]);
    int x = 26 - sum;
    printf("%d\n", x);
    return 0;
}

M - Zigzag

题目描述

在这里插入图片描述

问题分析

题目大体意思:在可以删除点的情况下,求最长的连续锯齿形曲线。
锯齿形曲线指的是:曲线中的每一个点和他相邻点的情况是大于和小于/小于和大于的情况,比如1 2 1 2 1 这就是一个锯齿形曲线。

AC代码

代码里做了比较详细的注释

#include <bits/stdc++.h>
using namespace std;
int a[100];
int dp[100][2];//dp存不同状态下到第i个点的最长的值
int main()
{
    int n;
    cin >> n;
    for (int i = 0; i < n; i++)
        cin >> a[i];
    int sum = 0;
    for (int i = 0; i < n; i++)
    {
        dp[i][0] = dp[i][1] = 1;//先初始化为1,因为一个数肯定符合条件
        //dp[i][0]存前一个点到第i个点是递减的情况
        //dp[i][1]存前一个点到第i个点是递增的情况
        for (int j = 0; j < i; j++)
        {
            if (a[j] > a[i])//a[j]>a[i]即前一个到a[i]为递减
                dp[i][0] = max(dp[i][0], dp[j][1] + 1);//取一个较大值
            //dp[j][1]+1为状态转移,即从递增状态转为递减状态
        }
        for (int j = 0; j < i; j++)
        {
            if (a[j] < a[i])//a[j]<a[i]即前一个到a[i]为递增
                dp[i][1] = max(dp[i][1], dp[j][0] + 1);//取一个较大值
            //dp[j][0]+1为状态转移,即从递减状态转为递增状态
        }
        sum = max(sum, max(dp[i][0], dp[i][1]));
    }
    cout << sum << endl;

    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值