(一)卷积网络之基础要点

一、提出问题

对于生活生产中的表格数据,至多也就上百维,而且表格数据的行与行之间没有序列和位置上的关系,所以用传统的机器学习算法就可轻松的解决这些问题。但是到了图片数据,传统机器学习就非常吃力了,一个普通的RGB图片,怎样向量化?传统机器学习的输入都是向量。如果强制把一个RGB图片拉成向量,会出现三个问题:

  1. 向量纬度会非常大,模型的参数非常多;
  2. 强制把RGB图片拉成向量,丢失了像素的位置关系,这对于图片数据来说是最大的问题;
  3. 算法对于向量过于敏感,因为对于图片来说更多的是多个具有结构的像素才具有意义,不像传统表格数据,维度间关联度不大;

二、解决问题

针对上面三个问题,深度学习引入了两个看似平淡无奇但是却惊动武林的想法:

  1. 引入卷积层,解决维度大参数多问题,解决了像素位置结构丢失问题;
  2. 引入迟化层,解决了对于像素的敏感问题。

三、意义

卷积层用来很好的抓取图片的特征,迟化层用来解决模型对卷积抓取的特征过于敏感,增加泛化能力。和传统机器学习讨论是一样的,一方面狠狠的拟合数据,另一方面又小心翼翼的防止过拟合,任何一个模型都有这两把刷子。有了这两把刷子,就如同开车的油门和刹车,运用得当自然老司机,在历史上留名的那些著名模型就属于这一类恰当的配合卷积层和迟化层,创造出丰富多样、威力越来越大的模型,明白这两点,下面可以开车了。

已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页