B站视频评论爬取——以鬼灭之刃为例(并将其存储到csv中)

该博客介绍了如何使用Python爬虫从B站获取鬼灭之刃的评论数据,包括解析评论URL、获取评论内容、时间戳转换以及将数据写入CSV文件的过程。同时,代码展示了如何处理分页,以便获取更多评论。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

首先对网站进行分析,进入【调试界面】,寻找到“评论”的地址。

得到 鬼灭之刃 评论的源地址

https://api.bilibili.com/pgc/review/short/list?media_id=22718131&ps=20&sort=0

打开源地址,可以发现这是当前页面的。

对源地址进行分析

https://api.bilibili.com/pgc/review/short/list?media_id=22718131&ps=20&sort=0

对三个红色的数字进行分析,得出第一个数字“22718131”是鬼灭之刃番号的代码,第二个数字是当前页面包含的评论数,第三个数字是页码。

接下来,对源地址的评论内容进行筛选、分析;挑选出我们需要的内容。

 

————————————————————暂时先写到这了(有不懂的可以评论)。

代码如下。

 

import time
import csv
import requests
import json

headers = {"User-Agent": "Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/55.0.2883.87 Safari/537.36"}#伪装成浏览器,绕过反爬
url='https://api.bilibili.com/pgc/review/short/list?media_id=22718131&ps=20&sort=0'
# 发送get请求
w = requests.get(url, headers=headers).text
json_comment=json.loads(w)
total=json_comment['data']['list']#url中list中存储的内容
num=json_comment['data']['total']#total中的内容,一共有多少个url
#用下面的话 太麻烦了 虽然变量多了 可读性变高了 但是再次循环的时候 会遇到一些小问题  需要再次写一遍 所以直接用 “total”比较舒服
# uname = json_comment['data']['list']#用户名
# utime = json_comment['data']['list']#时间
# user_grade =json_comment['data']['list']#分数
# s=json_comment['data']#url中的所有内容
j = 0
header = ['用户名','发表时间','分数','评论',"点赞数","不喜欢"]#为CSV创建第一行(头
with open('test.csv','a+',newline='',encoding='utf-8') as f:#写入CSV
    writer = csv.DictWriter(f,fieldnames=header)
    writer.writeheader()
    while j < 1:
        total = json_comment['data']['list']
        for i in range(len(total)):
            # uname = total[i]['uname']
            comment = total[i]['content']  # 获取url中的评论
            uame = total[i]['author']['uname'] #用户的名称
            ctime = total[i]['ctime']#获得评论的时间戳
            xtime = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(int(ctime)))#时间戳转换为 %Y-%m-%d %H:%M:%S
            score = total[i]['score'] #分数
            #喜欢 不喜欢
            star_disliked = total[i]['stat']['disliked']
            # star_like = total[i]['stat']['liked']
            star_likes = total[i]['stat']['likes']
            outdata = [{"用户名": uame, "发表时间": xtime, "分数": score, "评论": comment,"点赞数":star_likes,"不喜欢":star_disliked}]
            # print(outdata)
            writer.writerows(outdata)#写入CSV
        j += 1
        next = json_comment['data']['next']  # 获取next中的内容
        # print(next)   #79714616963704
        next1 = str(next)#获取下一页评论的index
        url1 = url + '&cursor=' + next1  # 这时候 url更新了   用户名 发表时间 分数 评论 都更新了
        response = requests.get(url1, headers=headers).text  # 再次获得初始数据
        json_comment = json.loads(response) #当前循环结束 这里的值作为下一个循环的初始值

 

 

### 使用Python爬虫抓取哔哩哔哩网视频页面的用户评论数据 为了实现这一目标,可以采用如下方法: #### 准备工作 确保安装必要的库,如`requests`用于发送HTTP请求,以及`json`处理JSON格式的数据。另外,可能还需要`pandas`来整理和存储获取到的信息。 ```bash pip install requests pandas ``` #### 获取API接口地址 大多数情况下,像哔哩哔哩这样的平台会通过特定的API端点提供结构化的数据访问方式。对于视频评论而言,通常存在专门针对此功能设计好的RESTful API服务[^2]。因此,第一步是要找到这些API的具体URL路径及其参数设置规则。 #### 发送请求解析响应 一旦确定了正确的API入口链接之后,就可以构建相应的GET/POST请求去调用它,从中抽取所需字段。下面是一个简单的子展示怎样利用`requests.get()`函数向服务器发起查询操作,同时指定headers模仿浏览器行为以绕过某些反爬机制;接着把返回的结果转换成字典形式以便后续读取其中的关键属性值,比如用户名、发布时间戳及具体内容等。 ```python import json import requests from datetime import datetime def fetch_comments(bvid, page=1): url = f"https://api.bilibili.com/x/v2/reply?jsonp=jsonp&pn={page}&type=1&oid={bvid}" headers = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64)', 'Referer': f'https://www.bilibili.com/video/{bvid}' } response = requests.get(url=url, headers=headers) data = json.loads(response.text)['data'] replies = [] for reply in data['replies']: user_name = reply['member']['uname'] comment_time = str(datetime.fromtimestamp(reply['ctime'])) content = reply['content']['message'] replies.append({ "username": user_name, "time": comment_time, "comment": content }) return replies ``` 这段代码定义了一个名为`fetch_comments`的功能模块,接受两个参数——视频唯一标识符(`bvid`) 和分页编号 (`page`) ,默认从第一页开始加载。内部逻辑则是按照官方文档说明组装完整的网络请求链路,最后遍历回复列表收集每条评论的相关细节形成新的记录集合供外部调用者进一步加工处理。 #### 存储所获资料 考虑到实际应用场景下往往涉及大量条目的累积保存需求,在完成一轮或多轮次的数据采集动作以后应当考虑将其持久化至本地文件系统或是数据库管理系统当中。这里仅给出基于CSV格式导出表格样式的简单示范: ```python import pandas as pd comments_data = [] for i in range(1, max_pages + 1): comments_page = fetch_comments('BVxxxxxxxxxx', i) comments_data.extend(comments_page) df = pd.DataFrame(comments_data) df.to_csv('./output/comments.csv', index=False, encoding='utf_8_sig') ``` 上述脚本片段实现了循环调用之前编写的辅助函数直至达到预设的最大翻页次数上限为止,将所有取得的内容汇总起来构建成Pandas DataFrame对象再写入磁盘作为最终成果输出。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值