卷积神经网络CNN:Tensorflow实现(以及对卷积特征的可视化)

卷积神经网络最早是为了解决图像识别的问题,现在也用在时间序列数据和文本数据处理当中,卷积神经网络对于数据特征的提取不用额外进行,在对网络的训练的过程当中,网络会自动提取主要的特征.
  卷积神经网络直接用原始图像的全部像素作为输入,但是内部为非全连接结构.因为图像数据在空间上是有组织结构的,每一个像素在空间上和周围的像素是有关系的,和相距很远的像素基本上是没什么联系的,每个神经元只需要接受局部的像素作为输入,再将局部信息汇总就能得到全局信息.
  权值共享和池化两个操作使网络模型的参数大幅的减少,提高了模型的训练效率.

  • 权值共享:
      在卷积层中可以有多个卷积核,每个卷积核与原始图像进行卷积运算后会映射出一个新的2D图像,新图像的每个像素都来自同一个卷积核.这就是权值共享.
  • 池化:
    降采样,对卷积(滤波)后,经过激活函数处理后的图像,保留像素块中灰度值最高的像素点(保留最主要的特征),比如进行 2X2的最大池化,把一个2x2的像素块降为1x1的像素块.
# 卷积网络的训练数据为MNIST(28*28灰度单色图像)
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
from tensorflow.examples.tutorials.mnist import input_data

训练参数

train_epochs = 100    # 训练轮数
batch_size   = 100     # 随机出去数据大小
display_step = 1       # 显示训练结果的间隔
learning_rate= 0.0001  # 学习效率
drop_prob    = 0.5     # 正则化,丢弃比例
fch_nodes    = 512     # 全连接隐藏层神经元的个数

网络结构

这里写图片描述

输入层为输入的灰度图像尺寸:  -1 x 28 x 28 x 1 
第一个卷积层,卷积核的大小,深度和数量 (5, 5, 1, 16)
池化后的特征张量尺寸:       -1 x 14 x 14 x 16
第二个卷积层,卷积核的大小,深度和数量 (5, 5, 16, 32)
池化后的特征张量尺寸:       -1 x 7 x 7 x 32
全连接层权重矩阵         1568 x 512
输出层与全连接隐藏层之间,  512 x 10

一些辅助函数

# 网络模型需要的一些辅助函数
# 权重初始化(卷积核初始化)
# tf.truncated_normal()不同于tf.random_normal(),返回的值中不会偏离均值两倍的标准差
# 参数shpae为一个列表对象,例如[5, 5, 1, 32]对应
# 5,5 表示卷积核的大小, 1代表通道channel,对彩色图片做卷积是3,单色灰度为1
# 最后一个数字32,卷积核的个数,(也就是卷基层提取的特征数量)
#   显式声明数据类型,切记
def weight_init(shape):
    weights = tf.truncated_normal(shape, stddev=0.1,dtype=tf.float32)
    return tf.Variable(weights)

# 偏置的初始化
def biases_init(shape):
    biases = tf.random_normal(shape,dtype=tf.float32)
    return tf.Variable(biases)

# 随机选取mini_batch
def get_random_batchdata(n_samples, batchsize):
    start_index = np.random.randint(0, n_samples - batchsize)
    return (start_index, start_index + batchsize)
# 全连接层权重初始化函数xavier
def xavier_init(layer1, layer2, constant = 1):
    Min = -constant * np.sqrt(6.0 / (layer1 + layer2))
    Max = constant * np.sqrt(6.0 / (layer1 + layer2))
    return tf.Variable(tf.random_uniform((layer1, layer2), minval = Min, maxval = Max, dtype = tf.float32))
# 卷积
def conv2d(x, w):
    return tf.nn.conv2d(x, w, strides=[1, 1, 1, 1], padding='SAME')

# 源码的位置在tensorflow/python/ops下nn_impl.py和nn_ops.py
# 这个函数接收两个参数,x 是图像的像素, w 是卷积核
# x 张量的维度[batch, height, width, channels]
# w 卷积核的维度[height, width, channels, channels_multiplier]
# tf.nn.conv2d()是一个二维卷积函数,
# stirdes 是卷积核移动的步长,4个1表示,在x张量维度的四个参数上移动步长
# padding 参数'SAME',表示对原始输入像素进行填充,卷积后映射的2D图像与原图大小相等
# 填充,是指在原图像素值矩阵周围填充0像素点
# 如果不进行填充,假设 原图为 32x32 的图像,卷积和大小为 5x5 ,卷积后映射图像大小 为 28x28

Padding

卷积核在提取特征时的动作成为padding,它有两种方式:SAME和VALID。卷积核的移动步长不一定能够整除图片像素的宽度,所以在有些图片的边框位置有些像素不能被卷积。这种不越过边缘的取样就叫做 valid padding,卷积后的图像面积小于原图像。为了让卷积核覆盖到所有的像素,可以对边缘位置进行0像素填充,然后在进行卷积。这种越过边缘的取样是 same padding。如过移动步长为1,那么得到和原图一样大小的图像。
	如果步长很大,超过了卷积核长度,那么same padding,得到的特征图也会小于原来的图像。
# 池化
def max_pool_2x2(x):
    return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')

# 池化跟卷积的情况有点类似
# x 是卷积后,有经过非线性激活后的图像,
# ksize 是池化滑动张量
# ksize 的维度[batch, height, width, channels],跟 x 张量相同
# strides [1, 2, 2, 1],与上面对应维度的移动步长
# padding与卷积函数相同,padding='VALID',对原图像不进行0填充
# x 是手写图像的像素值,y 是图像对应的标签
x = tf.placeholder(tf.float32, [None, 784])
y = tf.placeholder(tf.float32, [None, 10])
# 把灰度图像一维向量,转换为28x28二维结构
x_image = tf.reshape(x, [-1, 28, 28, 1])
# -1表示任意数量的样本数,大小为28x28深度为一的张量
# 可以忽略(其实是用深度为28的,28x1的张量,来表示28x28深度为1的张量)

第一层卷积+池化


w_conv1 = weight_init([5, 5, 1, 16])                             # 5x5,深度为1,16个
b_conv1 = biases_init([16])
h_conv1 = tf.nn.relu(conv2d(x_image, w_conv1) + b_conv1)    # 输出张量的尺寸:28x28x16
h_pool1 = max_pool_2x2(h_conv1)                                   # 池化后张量尺寸:14x14x16
# h_pool1 , 14x14的16个特征图
  •  

第二层卷积+池化


w_conv2 = weight_init([5, 5, 16, 32])                             # 5x5,深度为16,32个
b_conv2 = biases_init([32])
h_conv2 = tf.nn.relu(conv2d(h_pool1, w_conv2) + b_conv2)    # 输出张量的尺寸:14x14x32
h_pool2 = max_pool_2x2(h_conv2)                                   # 池化后张量尺寸:7x7x32
# h_pool2 , 7x7的32个特征图
  •  
# h_pool2是一个7x7x32的tensor,将其转换为一个一维的向量
h_fpool2 = tf.reshape(h_pool2, [-1, 7*7*32])
# 全连接层,隐藏层节点为512个
# 权重初始化
w_fc1 = xavier_init(7*7*32, fch_nodes)
b_fc1 = biases_init([fch_nodes])
h_fc1 = tf.nn.relu(tf.matmul(h_fpool2, w_fc1) + b_fc1)
# 全连接隐藏层/输出层
# 为了防止网络出现过拟合的情况,对全连接隐藏层进行 Dropout(正则化)处理,在训练过程中随机的丢弃部分
# 节点的数据来防止过拟合.Dropout同把节点数据设置为0来丢弃一些特征值,仅在训练过程中,
# 预测的时候,仍使用全数据特征
# 传入丢弃节点数据的比例
#keep_prob = tf.placeholder(tf.float32)
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob=drop_prob)

# 隐藏层与输出层权重初始化
w_fc2 = xavier_init(fch_nodes, 10)
b_fc2 = biases_init([10])

# 未激活的输出
y_ = tf.add(tf.matmul(h_fc1_drop, w_fc2), b_fc2)
# 激活后的输出
y_out = tf.nn.softmax(y_)
# 交叉熵代价函数
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y * tf.log(y_out), reduction_indices = [1]))

# tensorflow自带一个计算交叉熵的方法
# 输入没有进行非线性激活的输出值 和 对应真实标签
#cross_loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(y_, y))

# 优化器选择Adam(有多个选择)
optimizer = tf.train.AdamOptimizer(learning_rate).minimize(cross_entropy)

# 准确率
# 每个样本的预测结果是一个(1,10)的vector
correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_out, 1))
# tf.cast把bool值转换为浮点数
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
# 全局变量进行初始化的Operation
init = tf.global_variables_initializer()
# 加载数据集MNIST
mnist = input_data.read_data_sets('MNIST/mnist', one_hot=True)
n_samples = int(mnist.train.num_examples)
total_batches = int(n_samples / batch_size)
# 会话
with tf.Session() as sess:
    sess.run(init)
    Cost = []
    Accuracy = []
    for i in range(train_epochs):

        for j in range(100):
            start_index, end_index = get_random_batchdata(n_samples, batch_size)
            
            batch_x = mnist.train.images[start_index: end_index]
            batch_y = mnist.train.labels[start_index: end_index]
            _, cost, accu = sess.run([ optimizer, cross_entropy,accuracy], feed_dict={x:batch_x, y:batch_y})
            Cost.append(cost)
            Accuracy.append(accu)
        if i % display_step ==0:
            print ('Epoch : %d ,  Cost : %.7f'%(i+1, cost))
    print 'training finished'
    # 代价函数曲线
    fig1,ax1 = plt.subplots(figsize=(10,7))
    plt.plot(Cost)
    ax1.set_xlabel('Epochs')
    ax1.set_ylabel('Cost')
    plt.title('Cross Loss')
    plt.grid()
    plt.show()
    # 准确率曲线
    fig7,ax7 = plt.subplots(figsize=(10,7))
    plt.plot(Accuracy)
    ax7.set_xlabel('Epochs')
    ax7.set_ylabel('Accuracy Rate')
    plt.title('Train Accuracy Rate')
    plt.grid()
    plt.show()
#----------------------------------各个层特征可视化-------------------------------
    # imput image
    fig2,ax2 = plt.subplots(figsize=(2,2))
    ax2.imshow(np.reshape(mnist.train.images[11], (28, 28)))
    plt.show()
    
    # 第一层的卷积输出的特征图
    input_image = mnist.train.images[11:12]
    conv1_16 = sess.run(h_conv1, feed_dict={x:input_image})     # [1, 28, 28 ,16] 
    conv1_transpose = sess.run(tf.transpose(conv1_16, [3, 0, 1, 2]))
    fig3,ax3 = plt.subplots(nrows=1, ncols=16, figsize = (16,1))
    for i in range(16):
        ax3[i].imshow(conv1_transpose[i][0])                      # tensor的切片[row, column]
     
    plt.title('Conv1 16x28x28')
    plt.show()
    
    # 第一层池化后的特征图
    pool1_16 = sess.run(h_pool1, feed_dict={x:input_image})     # [1, 14, 14, 16]
    pool1_transpose = sess.run(tf.transpose(pool1_16, [3, 0, 1, 2]))
    fig4,ax4 = plt.subplots(nrows=1, ncols=16, figsize=(16,1))
    for i in range(16):
        ax4[i].imshow(pool1_transpose[i][0])
     
    plt.title('Pool1 16x14x14')
    plt.show()
    
    # 第二层卷积输出特征图
    conv2_32 = sess.run(h_conv2, feed_dict={x:input_image})          # [1, 14, 14, 32]
    conv2_transpose = sess.run(tf.transpose(conv2_32, [3, 0, 1, 2]))
    fig5,ax5 = plt.subplots(nrows=1, ncols=32, figsize = (32, 1))
    for i in range(32):
        ax5[i].imshow(conv2_transpose[i][0])
    plt.title('Conv2 32x14x14')
    plt.show()
    
    # 第二层池化后的特征图
    pool2_32 = sess.run(h_pool2, feed_dict={x:input_image})         #[1, 7, 7, 32]
    pool2_transpose = sess.run(tf.transpose(pool2_32, [3, 0, 1, 2]))
    fig6,ax6 = plt.subplots(nrows=1, ncols=32, figsize = (32, 1))
    plt.title('Pool2 32x7x7')
    for i in range(32):
        ax6[i].imshow(pool2_transpose[i][0])
    
    plt.show()
    
Epoch : 1 ,  Cost : 1.7629557
Epoch : 2 ,  Cost : 0.8955871
Epoch : 3 ,  Cost : 0.6002768
Epoch : 4 ,  Cost : 0.4222347
Epoch : 5 ,  Cost : 0.4106165
Epoch : 6 ,  Cost : 0.5070749
Epoch : 7 ,  Cost : 0.5032627
Epoch : 8 ,  Cost : 0.3399751
Epoch : 9 ,  Cost : 0.1524799
Epoch : 10 ,  Cost : 0.2328545
Epoch : 11 ,  Cost : 0.1815660
Epoch : 12 ,  Cost : 0.2749544
Epoch : 13 ,  Cost : 0.2539429
Epoch : 14 ,  Cost : 0.1850740
Epoch : 15 ,  Cost : 0.3227096
Epoch : 16 ,  Cost : 0.0711472
Epoch : 17 ,  Cost : 0.1688010
Epoch : 18 ,  Cost : 0.1442217
Epoch : 19 ,  Cost : 0.2415594
Epoch : 20 ,  Cost : 0.0848383
Epoch : 21 ,  Cost : 0.1879225
Epoch : 22 ,  Cost : 0.1355369
Epoch : 23 ,  Cost : 0.1578972
Epoch : 24 ,  Cost : 0.1017473
Epoch : 25 ,  Cost : 0.2265745
Epoch : 26 ,  Cost : 0.2625684
Epoch : 27 ,  Cost : 0.1950202
Epoch : 28 ,  Cost : 0.0607868
Epoch : 29 ,  Cost : 0.0782418
Epoch : 30 ,  Cost : 0.0744723
Epoch : 31 ,  Cost : 0.0848689
Epoch : 32 ,  Cost : 0.1038134
Epoch : 33 ,  Cost : 0.0848786
Epoch : 34 ,  Cost : 0.1219746
Epoch : 35 ,  Cost : 0.0889094
Epoch : 36 ,  Cost : 0.0605406
Epoch : 37 ,  Cost : 0.0478896
Epoch : 38 ,  Cost : 0.1100840
Epoch : 39 ,  Cost : 0.0168766
Epoch : 40 ,  Cost : 0.0479708
Epoch : 41 ,  Cost : 0.1187883
Epoch : 42 ,  Cost : 0.0707371
Epoch : 43 ,  Cost : 0.0471128
Epoch : 44 ,  Cost : 0.1206998
Epoch : 45 ,  Cost : 0.0674985
Epoch : 46 ,  Cost : 0.1218394
Epoch : 47 ,  Cost : 0.0840694
Epoch : 48 ,  Cost : 0.0468497
Epoch : 49 ,  Cost : 0.0899443
Epoch : 50 ,  Cost : 0.0111846
Epoch : 51 ,  Cost : 0.0653627
Epoch : 52 ,  Cost : 0.1446207
Epoch : 53 ,  Cost : 0.0320902
Epoch : 54 ,  Cost : 0.0792156
Epoch : 55 ,  Cost : 0.1250363
Epoch : 56 ,  Cost : 0.0477339
Epoch : 57 ,  Cost : 0.0249218
Epoch : 58 ,  Cost : 0.0571465
Epoch : 59 ,  Cost : 0.0152223
Epoch : 60 ,  Cost : 0.0373616
Epoch : 61 ,  Cost : 0.0417238
Epoch : 62 ,  Cost : 0.0710011
Epoch : 63 ,  Cost : 0.0654174
Epoch : 64 ,  Cost : 0.0234730
Epoch : 65 ,  Cost : 0.0267291
Epoch : 66 ,  Cost : 0.0329132
Epoch : 67 ,  Cost : 0.0344089
Epoch : 68 ,  Cost : 0.1151591
Epoch : 69 ,  Cost : 0.0555586
Epoch : 70 ,  Cost : 0.0213475
Epoch : 71 ,  Cost : 0.0567649
Epoch : 72 ,  Cost : 0.1207196
Epoch : 73 ,  Cost : 0.0407380
Epoch : 74 ,  Cost : 0.0580697
Epoch : 75 ,  Cost : 0.0352901
Epoch : 76 ,  Cost : 0.0420529
Epoch : 77 ,  Cost : 0.0016548
Epoch : 78 ,  Cost : 0.0184542
Epoch : 79 ,  Cost : 0.0657262
Epoch : 80 ,  Cost : 0.0185127
Epoch : 81 ,  Cost : 0.0211956
Epoch : 82 ,  Cost : 0.0709701
Epoch : 83 ,  Cost : 0.1013358
Epoch : 84 ,  Cost : 0.0876017
Epoch : 85 ,  Cost : 0.1351897
Epoch : 86 ,  Cost : 0.1239478
Epoch : 87 ,  Cost : 0.0147001
Epoch : 88 ,  Cost : 0.0155131
Epoch : 89 ,  Cost : 0.0425102
Epoch : 90 ,  Cost : 0.0912542
Epoch : 91 ,  Cost : 0.0445287
Epoch : 92 ,  Cost : 0.0823120
Epoch : 93 ,  Cost : 0.0155016
Epoch : 94 ,  Cost : 0.0869377
Epoch : 95 ,  Cost : 0.0641734
Epoch : 96 ,  Cost : 0.0498264
Epoch : 97 ,  Cost : 0.0289681
Epoch : 98 ,  Cost : 0.0271511
Epoch : 99 ,  Cost : 0.0131940
Epoch : 100 ,  Cost : 0.0418167
training finished

训练交叉熵代价
这里写图片描述

训练的准确率

这里写图片描述

训练数据中的一个样本
这里写图片描述

第一个卷积层提取的特征
 这里写图片描述

2x2池化后的特征
 这里写图片描述

第二层卷积提取特征
 这里写图片描述

2x2池化后的特征
这里写图片描述

  • 1
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
### 回答1: 电影评论情感分类是一项重要的自然语言处理任务,旨在自动将电影评论分为正面或负面情感。为了解决这个问题,研究人员已经开发了各种机器学习模型,其中卷积神经网络text-cnn是一种有效的模型。 TensorFlow是一个强大的深度学习库,提供了text-cnn模型的实现。text-cnn模型由多个卷积层和全局最大池化层组成,每个卷积层用于提取文本中的特定特征,而全局最大池化层则用于提取最具代表性的特征。最终,这些特征将被用于分类任务,通过一个全连接层来实现。 与其他情感分类模型相比,text-cnn模型具有许多优点。首先,它可以自适应不同长度的文本输入,并且不需要手动提取特征。其次,text-cnn模型具有较高的分类准确率,并且可以在大规模数据上进行训练,以提高其性能。最后,TensorFlow提供了一个简单的接口来实现text-cnn模型,并且提供了丰富的调试和可视化工具,使得模型的训练和评估变得更加容易。 总之,卷积神经网络text-cnn模型是一种高效、准确的情感分类模型,结合TensorFlow库的支持,可以有效地应用于电影评论等自然语言处理任务中。 ### 回答2: 电影评论情感分类是一类自然语言处理任务,它的目标是对一段文本进行情感分类,预测这段文本表达的情感是正面的(positive)还是负面的(negative)。在实践中,卷积神经网络CNN)已经被广泛应用于情感分类,其中text-cnn模型是最常用的一种。 Text-cnn模型在情感分类任务中的表现优秀,它将文本看作是一种二维结构,其中一个维度是词语,另一个维度是嵌入矩阵中的向量。文本中的词被编码为嵌入向量,并且这些嵌入向量被视为图像的像素。在text-cnn模型中,多个不同大小的卷积核被用来通过卷积操作提取出文本的局部特征。这些局部特征被压缩成一个全局特征向量,并通过一个全连接层进行分类器预测。 TensorFlow实现text-cnn模型的流行工具之一,它是一个开源的机器学习框架,提供了广泛的API和工具来创建高效的深度学习模型。TensorFlow可以轻松地构建text-cnn模型,而且具有内置的优化器和损失函数,它可以加速模型训练和优化。 总的来说,text-cnn模型是一个强大的情感分类器,它已经在几个领域得到了成功的应用。在使用TensorFlow实现text-cnn模型时,需要注意模型的超参数调整,以及数据预处理和特征工程的优化,这些都可以影响模型的性能和泛化能力。 ### 回答3: 电影评论情感分类是NLP领域的一个基础应用问题,通过对文本进行情感分类可以帮助我们更好地理解用户心理、市场需求等诸多方面。卷积神经网络(CNN)是目前NLP领域应用广泛的深度学习算法,它能够对输入的多维矩阵进行特征提取,逐层降维,最终将特征表示为一维向量。 Text-CNNCNN在NLP领域的应用,它主要通过卷积层和池化层对文本进行特征提取和降维。卷积层通过提取矩阵中的局部特征,池化层通过按照一定的规则对特征进行采样,最终形成一个固定长度的向量作为文本的表示。在情感分类任务中,Text-CNN可以通过对输入的文本进行卷积和池化操作,得到文本的固定长度特征向量,进而输出文本的情感类别。 TensorFlow是当前最受欢迎的深度学习框架之一,它提供了丰富的API和工具,能够方便地构建并训练Text-CNN模型。在构建Text-CNN模型时,首先需要进行文本的预处理,将文本转换为数字表示,然后使用TensorFlow对模型进行定义和训练。 总之,电影评论情感分类是NLP领域一个重要的应用问题,采用Text-CNN模型可以准确有效地对文本进行情感分类,而TensorFlow提供了一个便捷的框架和工具,用于构建和训练Text-CNN模型。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值