K-近邻算法
描述
k-近邻算法采用测量不同特征值之间的距离方法进行分类。
算法特点:
- 优点:精度高、对异常值不敏感、无数据输入假定。
- 缺点:计算复杂度高、空间复杂度高。(耗时,耗计算资源,例如中间数据的存储,另外是测试对象,要和所有的样本对象进行比较,没有训练的过程,只有测试过程。)。最大的缺点就是无法给出数据的内在含义。
- 适用数据范围:数值型(可以通过范围进行散列)和标称型。(散列)
工作原理:存在一个样本数据集合,也称训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集中每一数据与所属分类的对应关系。输入没有标签的新数据后,将新数据的每个特征与样本集中数据对应的特征进行比较,然后算法提取样本集中特征最相似数据(最近邻)的分类标签。
K值的意思:一般来说,我们只选择样本数据集中前k个最相似的数据,这就是K-近邻算法中K的出处,通常k是不大于20的整数。最后少数服从多数。
注意这里需要说明的是:
- 距离:可以是加权距离,集合距离或者矩阵距离ÿ