机器学习实战笔记——k-近邻算法

k-近邻算法是一种基于距离度量的分类方法,以其简单和高效的特点被广泛应用。算法主要特点是精度高但计算复杂度高,适用于数值型和标称型数据。其工作原理是通过找到新数据与样本集中最相似的k个数据,根据这些数据的类别进行预测。常见的距离计算方法有曼哈顿距离和欧氏距离。文章通过电影分类、约会网站配对和手写识别等例子介绍了k-近邻算法的应用,并探讨了如何将结果进行可视化。
摘要由CSDN通过智能技术生成

K-近邻算法

描述

k-近邻算法采用测量不同特征值之间的距离方法进行分类。

算法特点:

  • 优点:精度高、对异常值不敏感、无数据输入假定。
  • 缺点:计算复杂度高、空间复杂度高。(耗时,耗计算资源,例如中间数据的存储,另外是测试对象,要和所有的样本对象进行比较,没有训练的过程,只有测试过程。)。最大的缺点就是无法给出数据的内在含义
  • 适用数据范围:数值型(可以通过范围进行散列)和标称型。(散列)

工作原理:存在一个样本数据集合,也称训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集中每一数据与所属分类的对应关系。输入没有标签的新数据后,将新数据的每个特征与样本集中数据对应的特征进行比较,然后算法提取样本集中特征最相似数据(最近邻)的分类标签。

K值的意思:一般来说,我们只选择样本数据集中前k个最相似的数据,这就是K-近邻算法中K的出处,通常k是不大于20的整数。最后少数服从多数。

注意这里需要说明的是:

  • 距离:可以是加权距离,集合距离或者矩阵距离ÿ
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值