2024.2.26:本文主要记录cuda和cudnn的安装,以及如何在新建环境中安装torch。
前言
接第一篇文章,在新建的pytorch_gpu环境中安装各种库
pythorch_gpu环境相关版本记录:cuda12.1、cudnn8.9.7、win11、4060显卡、python 3.11、torch 2.1.1
一、安装cuda+cudnn
1、cuda下载及安装
官网地址:https://developer.nvidia.com/cuda-toolkit-archive,选择合适的版本:
安装,双击下载好的exe文件
点击OK,等待安装完成
安装完成。
2、cudnn下载
官网地址:https://developer.nvidia.com/rdp/cudnn-archive,选择合适的版本:
解压下载好的cudnn压缩包
将bin文件夹中的文件全部复制到以下路径中:
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.1\bin
将include文件夹中的文件全部复制到以下路径中:
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.1\include
将lib文件夹中的x64复制到以下路径中:
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.1\lib
3、配置环境变量
配置完成如图所示:
4、验证是否安装成功
重启电脑,win+r,输入cmd,运行 nvcc -V,出现如下结果表示安装成功。
5、多个版本cuda如何切换使用
当电脑上有多个版本的cuda存在时,可在环境变量中调整优先顺序来决定需要使用的版本,如下图,表示此时使用的是cuda12.1。
若想要使用cuda11.7,需要在环境变量中调整顺序,然后重启电脑!!!(必须重启电脑后才有效)
二、安装torch
未在anaconda添加任何镜像源,采用wheel方式安装,详见pytorch官网:https://pytorch.org/get-started/previous-versions/
打开anaconda终端,激活pytorch_gpu环境,输入代码:
conda activate pytorch_gpu
选择合适的版本,如图:
在anaconda终端输入代码:
pip install torch==2.1.1 torchvision==0.16.1 torchaudio==2.1.1 --index-url https://download.pytorch.org/whl/cu121
torch安装完成。