安装cuda+cudnn以及在新建环境中安装torch

2024.2.26:本文主要记录cuda和cudnn的安装,以及如何在新建环境中安装torch。


前言

接第一篇文章,在新建的pytorch_gpu环境中安装各种库
pythorch_gpu环境相关版本记录:cuda12.1、cudnn8.9.7、win11、4060显卡、python 3.11、torch 2.1.1

一、安装cuda+cudnn

1、cuda下载及安装

官网地址:https://developer.nvidia.com/cuda-toolkit-archive,选择合适的版本:
在这里插入图片描述
安装,双击下载好的exe文件
在这里插入图片描述

点击OK,等待安装完成
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
安装完成。

2、cudnn下载

官网地址:https://developer.nvidia.com/rdp/cudnn-archive,选择合适的版本:
在这里插入图片描述解压下载好的cudnn压缩包
在这里插入图片描述
将bin文件夹中的文件全部复制到以下路径中:
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.1\bin

将include文件夹中的文件全部复制到以下路径中:
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.1\include

将lib文件夹中的x64复制到以下路径中:
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.1\lib

3、配置环境变量

配置完成如图所示:
在这里插入图片描述

4、验证是否安装成功

重启电脑,win+r,输入cmd,运行 nvcc -V,出现如下结果表示安装成功。
在这里插入图片描述

5、多个版本cuda如何切换使用

当电脑上有多个版本的cuda存在时,可在环境变量中调整优先顺序来决定需要使用的版本,如下图,表示此时使用的是cuda12.1。
在这里插入图片描述
若想要使用cuda11.7,需要在环境变量中调整顺序,然后重启电脑!!!(必须重启电脑后才有效)

二、安装torch

未在anaconda添加任何镜像源,采用wheel方式安装,详见pytorch官网:https://pytorch.org/get-started/previous-versions/

打开anaconda终端,激活pytorch_gpu环境,输入代码:

conda activate pytorch_gpu

选择合适的版本,如图:
在这里插入图片描述

在anaconda终端输入代码:

pip install torch==2.1.1 torchvision==0.16.1 torchaudio==2.1.1 --index-url https://download.pytorch.org/whl/cu121

torch安装完成。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值