判 别 分 析

一、实验目的

1.掌握应该使用线性判别函数而不使用多元回归的情形;

2.理解判别分析用于实际问题时的基本假定;

3.掌握判别分析应用时的要点;

4.描述判别分析的计算方法及其应用场合;

5.掌握如何解释线性判别函数的性质,即用显著的判别力去判定被解释变量;

6.掌握如何通过SPSS软件实现判别分析。

7.回归模型普及性的基础在于用它去预测和解释度量(metric)变量。

根据系统聚类法的谱系图图3-18、图3-19和图3-20可知,若将2016年全国31个省、直辖市、自治区城镇居民的人均消费支出水平划分为2类,其中北京和上海为一类,其余地区为一类。现将广东和西藏作为待判样品,具体分类数据如表4-3所示。试建立费歇线性判别函数,并将广东和西藏两个待判省区归类。

实验内容:

DISCRIMINANT

  /GROUPS=Group(1 2)

  /VARIABLES=X1 X2 X3 X4 X5 X6 X7 X8

  /ANALYSIS ALL

  /SAVE=CLASS

  /PRIORS EQUAL

  /STATISTICS=MEAN STDDEV RAW

  /CLASSIFY=NONMISSING POOLED.

Analysis Case Processing Summary

Unweighted Cases

N

Percent

Valid

29

93.5

Excluded

Missing or out-of-range group codes

2

6.5

At least one missing discriminating variable

0

.0

Both missing or out-of-range group codes and at least one missing discriminating variable

0

.0

Total

2

6.5

Total

31

100.0

Group Statistics

Group

Mean

Std. Deviation

Valid N (listwise)

Unweighted

Weighted

1

X1

9042.6000

1374.89843

2

2.000

X2

2238.9000

571.48370

2

2.000

X3

12672.0000

769.33218

2

2.000

X4

2189.6000

454.52824

2

2.000

X5

4762.7000

445.76011

2

2.000

X6

4294.1000

338.56273

2

2.000

X7

2734.8500

148.56313

2

2.000

X8

1121.3500

27.22361

2

2.000

2

X1

6219.3370

1161.92606

27

27.000

X2

1705.0556

367.54290

27

27.000

X3

4265.4852

1035.99501

27

27.000

X4

1308.3222

212.29766

27

27.000

X5

2920.1519

669.68013

27

27.000

X6

2419.0000

414.39125

27

27.000

X7

1624.4481

351.98210

27

27.000

X8

519.6704

139.21624

27

27.000

Total

X1

6414.0448

1360.59896

29

29.000

X2

1741.8724

395.03828

29

29.000

X3

4845.2448

2391.12022

29

29.000

X4

1369.1000

317.61390

29

29.000

X5

3047.2241

805.79717

29

29.000

X6

2548.3172

630.37353

29

29.000

X7

1701.0276

444.77780

29

29.000

X8

561.1655

205.17889

29

29.000

Summary of Canonical Discriminant Functions

Eigenvalues

Function

Eigenvalue

% of Variance

Cumulative %

Canonical Correlation

1

10.981a

100.0

100.0

.957

a. First 1 canonical discriminant functions were used in the analysis.

Wilks' Lambda

Test of Function(s)

Wilks' Lambda

Chi-square

df

Sig.

1

.083

57.116

8

.000

Classification Processing Summary

Processed

31

Excluded

Missing or out-of-range group codes

0

At least one missing discriminating variable

0

Used in Output

31

在SPSS中进行费歇判别分析是十分快捷的。首先按照表4-3把数据输入SPSS数据表中,然后依次点击 Analyze→-Classify→-Discriminant,打开 Discriminant Analysis对话框,将对话框左侧变量列表中的Group选入Grouping Variable框,并点击 Define Range,在弹出的Discriminant Analysis:Define Range 对话框中,定义判别原始数据的类别区间,本例为两类,故在Minimum 处输入1,在Maximum 处输入2,点击Continue 返回 Discriminant Analysis 对话框。再从对话框左侧的变量列表中将八个变量选人Independents框,作为判别分析的基础数据变量。点击 Statistics,弹出 Discriminant Analysis:Statistics 对话框,在Descriptives栏中选Means项,要求对各组的各变量做均值与标准差的描述;在Function Coefficients 栏中选Unstandardized 项(注意,不是Fisher's项),要求显示费歇判别法建立的非标准化系数。之后,点击Continue 返回Discriminant Analysis对话框。点击 Save,弹出 Discriminant Analysis:Save 对话框,选 Predicted group member ship 项要求将回判的结果存入原始数据库中。点击Continue 返回 Discriminant Analysis对话框,其他项目不变,点击 OK即完成分析。在输出结果中,可以看到各组均值、标准差、协方差阵等描述统计结果以及判别函数。返回数据表中,可以看到判别结果已经作为一个新的变量被保存,广东和西藏均被划分为第二类。受篇幅所限,各输出结果在此不再列示。

在SPSS中进行贝叶斯判别分析时,操作步骤与例4-3中的费歇判别相同,但是在Discriminant Analysis:Statistics 对话框的Function Coefficients 栏中要选Fisher's项而不是Unstandardized项(因为贝叶斯判别思想是由费歇提出来的,故SPSS以此命名)。Save 都分增加Probabilities of group membership 项,点击OK后得到分析结果。

逐步判别法也可以在SPSS中实现。操作步骤仍与例4-3类似,不同之处在于点击Analyze-Classify→-Discriminant,打开 Discriminant Analysis 对话框后,将 Independents栏下的 Enter independents together 项改选为Use stepwise method,此时窗口右侧的Method 按钮被激活,点击后进入 Discriminant Analysis:Stepwise Method 对话框,在Method 栏中选中Mahalanobis distance 项,即采用马氏距离,其他选项保持不变,返回主对话框后,其他操作仍与前面的例子类似。

实验总结

结果合理。根据系统聚类法的谱系图图3-18、图3-19和图3-20可知,若将2016年全国31个省、直辖市、自治区城镇居民的人均消费支出水平划分为2类,其中北京和上海为一类,其余地区为一类。现将广东和西藏作为待判样品,具体分类数据如表4-3所示。试建立费歇线性判别函数,并将广东和西藏两个待判省区归类。

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值