蒟蒻君的数学学习之路2——质数相关算法

⭐前言

质数,是数学里很重要的东东。若 p p p为质数, p p p > 1 >1 >1的整数且 p p p有且仅有 1 1 1 p p p两个因数。
今天,蒟蒻君将和大家一起学习质数相关算法(难度递增qwq)。


在这里插入图片描述

⭐一、质数判定

🎉 1.1 1.1 1.1 试除法

🚀思路

最常用的算法。

  1. 假设 n n n不是质数,则必有 a , b a,b a,b使得 n = a × b n = a \times b n=a×b
  2. a < b a < b a<b, 则 a ≤ n a \le \sqrt n an
  3. 枚举 a = 1 − n a = 1 - \sqrt n a=1n ,若所有 a a a均不被 n n n整除,则 n n n为质数,否则为合数。
  4. 注意特判 0 0 0 1 1 1

时间复杂度 O ( n ) O(\sqrt n) O(n )
空间复杂度 O ( 1 ) O(1) O(1)

🚀代码
inline bool isprime(int n) {
	if (n < 2) {
		return false;
	}
	for (int i = 2; i * i <= n; ++i) {
		if (n % i == 0) {
			return false;
		}
	}
	return true;
}

🎉 1.2 1.2 1.2 卡常写法

🚀思路

在法一的基础上可以进行以下优化:
n n n为质数,则 n m o d    2 ≠ 0 n \mod 2 \neq 0 nmod2=0 n m o d    3 ≠ 0 n \mod 3 \neq 0 nmod3=0,则 n m o d    6 = 1 / 5 n \mod 6 = 1/5 nmod6=1/5。跳过 2 − 4 2 - 4 24,时间复杂度可提高到之前的 1 3 \frac{1}{3} 31
注意特判 n = 2 / 3 / 5 / 7 / 11 n=2/3/5/7/11 n=2/3/5/7/11还有 n = 2 / 3 / 5 k ( k ∈ N ) n=2/3/5k(k\in N) n=2/3/5k(kN)

时间复杂度 O ( n ) O(\sqrt n) O(n ),只是常数有些变化;
空间复杂度 O ( 1 ) O(1) O(1)

🚀代码
inline bool isprime(int n) {
	if (n < 2) {
		return false;
	}
	if (n == 2 || n == 3 || n == 5 || n == 7 || n == 11) {
		return true;
	}
	if (n % 2 == 0 || n % 3 == 0 || n % 5 == 0) {
		return false;
	}
	for (int i = 1; i <= n / 6 + 1; ++i) {	// 枚举n = 6 * i +/- 1 
		if (i * 6 >= sqrt(n) + 5) {
			break;
		}
		if ((n % (i * 6 + 1) == 0) || (n % (i * 6 + 5) == 0)) {
			return false;
		}
	}
	return true;
}

如果让你从 1 − 100 1 - 100 1100这些数里筛出质数,那你还会一个一个数地试除吗 (当然你没有背过)
质数筛法适用于先预处理,然后多次查询的条件下。
下面我们来学习质数的两种筛法叭~
注意,质数筛法标程以洛谷P3383【模板】线性筛素数为例。

🎉 1.3 1.3 1.3 埃氏筛法

🚀思路

相信大家也都对这种方法不陌生。
比如我们要判断 1 − 100 1 - 100 1100中选出所有质数,那么我们可以这样做:

  1. 先将 1 − 100 1 - 100 1100写在纸上。
  2. 我们在 2 2 2上画一个小圈圈,然后叉掉所有 2 2 2的倍数;
  3. 再在 3 3 3上画一个小圈圈,删掉所有 3 3 3的倍数;
  4. 现在你发现 4 4 4已经被删掉了,那么就可以在 5 5 5上画一个圈圈,然后删掉所有 5 5 5的倍数。
  5. 以此类推,直到 1 − 100 1 - 100 1100中所有数都被划掉或圈起为止,质数为所有被圈出来的数。

接下来我们来分析一下ta的时间复杂度。
因为所有数要么都被删除或圈出一次,则时间复杂度为 O ( n ) O(n) O(n)
nonono
仔细思考可知,有些数会被删除多次,如 6 6 6 2 2 2 3 3 3删除,则:

T ( n ) = O ( ∑ p ≤ n n p ) = O ( ∑ p ≤ n 1 p ) = O ( n l o g l o g n ) T(n)=O(\displaystyle \sum_{p \le n} \frac{n}{p})=O(\displaystyle \sum_{p \le n} \frac{1}{p})=O(nloglogn) T(n)=O(pnpn)=O(pnp1)=O(nloglogn)
时间复杂度 O ( n l o g l o g n ) O(nloglogn) O(nloglogn)
空间复杂度 O ( n ) O(n) O(n)

🚀代码

注意:此方法时间复杂度较高,需使用scanf/printf/ios :: sync_with_stdio(0)方可AC。

#include <bits/stdc++.h>
using namespace std;
const int N = 1e8 + 5;
bool vis[N];
int p[N], cnt;
void init(int n) {
	vis[1] = true;
	for (int i = 2; i <= n; ++i) {
		if (vis[i]) {
			continue;
		}
		p[++cnt] = i;
		for (long long j = 1ll * i * i; j <= n; j += i) {
			vis[j] = true;
		}
	}
}
int main() {
	int n, q;
	scanf("%d %d", &n, &q);
	init(n);
	while (q--) {
		int k;
		scanf("%d", &k);
		printf("%d\n", p[k]);
	}
	return 0;
} 

🎉 1.4 1.4 1.4 欧拉筛法

🚀思路

相当于是埃氏筛法的优化版。
分析可知, n = p 1 a 1 × p 2 a 2 × p 3 a 3 × . . . × p m a m n = p1^{a1} \times p2^{a2} \times p3^{a3} \times ... \times pm^{am} n=p1a1×p2a2×p3a3×...×pmam只会被 p 1 a 1 − 1 × p 2 a 2 × p 3 a 3 × . . . × p m a m p1^{a1-1} \times p2^{a2} \times p3^{a3} \times ... \times pm^{am} p1a11×p2a2×p3a3×...×pmam划掉,不用考虑别的了。
时间复杂度 O ( n ) O(n) O(n)
空间复杂度 O ( n ) O(n) O(n)

🚀代码
#include <bits/stdc++.h>
using namespace std;
const int N = 1e8 + 5, M = 1e6 + 5;
bool P[N];
int n, q;
vector<int> p;
void init() {
	memset(P, true, sizeof P);
	P[1] = false;
	p.push_back(0); 
	for (int i = 2; i <= n; ++i) {
		if (P[i]) {
            p.push_back(i);
        }
		for (int j = 1; j <= p.size() && i * p[j] <= n; ++j) {
			P[i * p[j]] = false;
			if (i % p[j] == 0) {
				break;
            }
		}
	}
}
int main() {
    cin >> n >> q;
    init();
    while (q--) {
        int k;
        cin >> k;
        cout << p[k] << '\n';
    }
	return 0;
}

🎉 1.5 1.5 1.5 Miller-Rabin测试

🚀思路

巧妙但会出现失误的方法(但非常好用),适用于大数判断。
用到了一点后面的费马小定理。

  1. 算出整数 m m m使得 n = 2 k × m + 1 n = 2^{k} \times m+1 n=2k×m+1,随机 1 ≤ a < n 1 \le a < n 1a<n
  2. 对于 i < r ( i ∈ N ) i < r(i \in N) i<r(iN),若 a 2 i ∗ m m o d    n = n − 1 a^{2^{i}*m} \mod n=n-1 a2immodn=n1 a m m o d    n = 1 a^m \mod n=1 ammodn=1,则 n n n通过 a a a的测试;
  3. 选择多个 a a a,若全部通过则认为 n n n为质数。通过 t t t次测试, n n n为合数的概率为 1 4 t \frac{1}{4^{t}} 4t1
  4. 虽然还是有一定概率判断失误的,但这惊人的时间复杂度确实令人羡慕。如果你每次都用前7个素数测试,所有不超过341550071728320的数都不会判断失误。

注意:这里没有考虑直接乘会超出范围的情况(考虑的话加一点模拟就可以了)。
时间复杂度 O ( l o g n 2 ) O(logn^2) O(logn2)
空间复杂度 O ( 1 ) O(1) O(1)

🚀代码
int qpow(int x, int y, int p) {
	int res = 1;
	while (y) {
		if (y & 1) {
			(res *= x) %= p;
		}
		(x *= x) %= p;
		y >>= 1;
	}
	return res;
}
inline bool isprime(int n) {
	if (n <= 2) {
		return n == 2;
	}
	for (int i = 0; i < 10; ++i) {
		int a = rand() % (n - 2) + 2;	// 最小为2 
		if (qpow(a, n, n) != a) {
			return false;
		}
	}
	return true;
}

在这里插入图片描述

⭐二、相关定理

🎉 2.1 2.1 2.1 威尔逊定理

🚀结论

{ 若 p 为 质 数 , ( p − 1 ) ! ≡ − 1 ( m o d p ) 若 ( p − 1 ) ! ≡ − 1 ( m o d p ) , p 为 质 数 \begin{cases} 若p为质数,(p-1)!\equiv -1\pmod{p}\\ 若(p-1)!\equiv -1\pmod{p}, p为质数 \end{cases} {p,(p1)!1(modp)(p1)!1(modp),p

🚀证明

[ 2 , p − 2 ] [2,p-2] [2,p2]必被 p − 1 2 \frac{p-1}{2} 2p1对逆元覆盖。 1 1 1的逆元为 1 1 1,故此定理成立。

🎉 2.2 2.2 2.2 欧拉定理

🚀结论

欧拉函数: φ ( n ) φ(n) φ(n)表示满足 1 ≤ m ≤ n , m ∈ N 1 \le m \le n,m \in N 1mn,mN g c d ( n , m ) = 1 gcd(n,m)=1 gcd(n,m)=1 m m m的个数。
欧拉定理: a , m ∈ N a,m \in N a,mN g c d ( a , m ) = 1 gcd(a,m)=1 gcd(a,m)=1,则 a φ ( m ) ≡ 1 ( m o d m ) a^{φ(m)}\equiv1\pmod{m} aφ(m)1(modm)

🚀证明

{ b φ ( m ) } \left \{ b_{φ(m)} \right \} {bφ(m)} 1 → m 1 \to m 1m中于 m m m互质的数的集合。
我们发现 b b b数组中所有数 m o d    m \mod m modm余数各不相同,且余数都与 m m m互质。
仔细观察后发现, a × b 1 , a × b 2 , a × b 3 , . . . a × b φ ( m ) {a \times b_1,a \times b_2,a \times b_3,...a \times b_{φ(m)}} a×b1,a×b2,a×b3,...a×bφ(m)也符合以上两个条件。
综合以上结论, ∵ g c d ( a , m ) = 1 , g c d ( b i , m ) = 1 ∴ g c d ( a × b i , m ) = 1 \because gcd(a,m)=1,gcd(b_i,m)=1 \therefore gcd(a \times b_i,m) = 1 gcd(a,m)=1,gcd(bi,m)=1gcd(a×bi,m)=1
∵ a × b 1 → φ ( m ) m o d    n \because a \times b_{1 \to φ(m)} \mod n a×b1φ(m)modn的结果是 φ ( m ) φ(m) φ(m)个不同且与 m m m互质的数、
∴ \therefore 这些数就是 b b b了(真香)。
∴ a × b 1 × a × b 2 × a × b 3 × . . . × a × b φ ( m ) ≡ b 1 × b 2 × b 3 × . . . × b φ ( m ) ( m o d m ) \therefore a \times b_1 \times a \times b_2 \times a \times b_3 \times ... \times a \times b_{φ(m)} \equiv b_1 \times b_2 \times b_3 \times ... \times b_{φ(m)} \pmod{m} a×b1×a×b2×a×b3×...×a×bφ(m)b1×b2×b3×...×bφ(m)(modm)
a φ ( m ) ≡ 1 ( m o d m ) a^{φ(m)}\equiv1\pmod{m} aφ(m)1(modm)

🎉 2.3 2.3 2.3 费马小定理

🚀结论

若有 p p p为质数, a ∈ N a \in N aN使得 g c d ( a , p ) = 1 gcd(a,p)=1 gcd(a,p)=1,则 a p − 1 ≡ 1 ( m o d p ) a^{p-1}\equiv 1\pmod{p} ap11(modp)

🚀证明

看完了刚才的欧拉定理,费马小定理的证明应该很简单了叭~
∵ p \because p p为质数 ∴ φ ( p ) = p − 1 \thereforeφ(p)=p-1 φ(p)=p1,然后代入即可证明。
其实,费马小定理就是欧拉定理的一个特例。
在这里插入图片描述

⭐三、分解质因数

🎉 3.1 3.1 3.1 试除法

🚀思路

遍历 i = 2 − n i = 2 - \sqrt n i=2n ,若 i i i是质数且 i i i n n n的因数,则让 n n n不断除以 i i i,不能整除为止,使用常规算法判断质数(筛不筛复杂度都一样qwq)。
时间复杂度: O ( n ) O(n) O(n)
空间复杂度: O ( 1 ) O(1) O(1)

🚀代码
#include <bits/stdc++.h>
using namespace std;
inline bool isprime(int n) {
	if (n < 2) {
		return false;
	}
	for (int i = 2; i * i <= n; ++i) {
		if (n % i == 0) {
			return false;
		}
	}
	return true;
}
int main() {
	int n;
	cin >> n;
	for (int i = 1; i * i <= n; ++i) {
		if (n % i == 0 && isprime(i)) {
			while (n % i == 0) {
				cout << i << ' ';
				n /= i;
			}
		}
	}
	if (isprime(n)) {
		cout << n << '\n';
	}
	return 0;
} 

🎉 3.2 3.2 3.2 Pollard Rho算法

🚀思路

适用于大数分解。
我们每次寻找 n n n的任意一个因数 m m m,然后递归分解 m m m n m \frac{n}{m} mn
最大的问题就是,如何找到一个因数?当然不是去试除,而是有点随机的试验。
我们随机取出一个数 x x x,然后构造 y y y,使得 m ∣ ( x − y ) , n ∤ ( x − y ) m \mid (x-y),n \nmid (x-y) m(xy),n(xy)
m = g c d ( x − y , n ) m=gcd(x-y,n) m=gcd(xy,n)。若结果为 1 1 1的话我们就要继续不断调整 y y y,否则就成功找到了一个因数。
对于调整 y y y,一般策略为 y = y 2 + t y=y^2+t y=y2+t(t自定)。
直到 x = y x=y x=y,需要重新选取 x x x
时间复杂度: O ( n 1 4 ) O(n^{\frac{1}{4}}) O(n41)
空间复杂度: O ( n ) O(n) O(n)

🚀代码
#include <bits/stdc++.h>
using namespace std;
int x[1 << 7];
queue<int> q;
int qpow(int x, int y, int p) {
	int res = 1;
    while (y) {
        if (y & 1) {
            (res *= x) %= p;
        }
        (x *= x) %= p;
        y >>= 1;
    }
	return res;
}
bool isprime(int n) {
    if (n <= 2) {
        return n == 2;
    }
    int t = n - 1, sum = 0;
    int times = 20;
    while (!(t & 1)) {
        ++sum;
        t >>= 1;
    }
    while (times--) {
        int a = rand() % (n - 2) + 2;
        x[0] = qpow(a, t, n);
        for (int i = 1; i <= sum; ++i) {
            x[i] = x[i - 1] * x[i - 1] % n;
            if (x[i] == 1 && x[i - 1] != 1 && x[i - 1] != n - 1) {
                return false;
            }
        }
        if (x[sum] != 1) {
        	return false;
		}
    }
	return true;	
}
int Pollard_Rho(int n, int t) {
    int x = rand() % (n - 1) + 1, y = x;
    int i = 1, j = 2;
	while (true) {
        ++i;
        x = (x * x % n + t) % n;
		int m = __gcd((y - x + n) % n, n);
		if (m != 1 && m != n) {
            return m;
        }
		if (x == y) {
            return n;
        }
		if (i == j) {
			y = x;
			j <<= 1;
		}	
	}
}
void calc(int n, int t) {
	if (n == 1)	{
        return ;
    }
	if (isprime(n)) {
		q.push(n);
		return ;
	}
	int m = n, k = t;
	while (m >= n) {
		m = Pollard_Rho(m, t--);
	}
	calc(m, k);
	calc(n / m, k);
}
int main() {
	int n;
    cin >> n;
	calc(n, 110);
	while (q.size()) {
		cout << q.front() << ' ';
		q.pop();
	}
	return 0;
}

在这里插入图片描述

  • 20
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 10
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

蒟蒻一枚

谢谢鸭~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值