GLMSELECT Procedure

FROM http://support.sas.com/rnd/app/papers/glmselect.pdf

The GLMSELECT procedure performs effect selection in the framework of general linear models. A variety of model selection methods are available, including the LASSO method of Tibshirani (1996) and the related LAR method of Efron et al. (2004). The procedure offers extensive capabilities for customizing the selection with a wide variety of selection and stopping criteria, from traditional and computationally efficient significance-level-based criteria to more computationally intensive validation-based criteria. The procedure also provides graphical summaries of the selection search.

The GLMSELECT procedure compares most closely to REG and GLM. The REG procedure supports a variety of model-selection methods but does not support a CLASS statement. The GLM procedure supports a CLASS statement but does not include effect selection methods. The GLMSELECT procedure fills this gap. GLMSELECT focuses on the standard independently and identically distributed general linear model for univariate responses and offers great flexibility for and insight into the model selection algorithm. GLMSELECT provides results (displayed tables, output data sets, and macro variables) that make it easy to take the selected model and explore it in more detail in a subsequent procedure such as REG or GLM.

The main features of the GLMSELECT procedure are as follows:

Model Specification

supports different parameterizations for classification effects

supports any degree of interaction (crossed effects) and nested effects

supports hierarchy among effects

supports partitioning of data into training, validation, and testing roles

supports constructed effects including spline and multimember effects

Selection Control

 provides multiple effect selection methods

enables selection from a very large number of effects (tens of thousands)

offers selection of individual levels of classification effects

provides effect selection based on a variety of selection criteria

provides stopping rules based on a variety of model evaluation criteria

provides leave-one-out and -fold cross validation

Display and Output

produces graphical representation of selection process

produces output data sets containing predicted values and residuals

produces an output data set containing the design matrix

produces macro variables containing selected models

supports parallel processing of BY groups

supports multiple SCORE statements

 

`PROCEDURE` 是 MySQL 中用于创建存储过程的关键字。存储过程是一组预先编写好的 SQL 语句集合,可以在需要的时候执行。使用存储过程可以将常用的 SQL 语句封装起来,方便重复使用,并且可以提高 SQL 执行效率。 创建存储过程的语法如下: ``` CREATE [DEFINER = { user | CURRENT_USER }] PROCEDURE sp_name ([proc_parameter[,...]]) [characteristic ...] routine_body proc_parameter: [ IN | OUT | INOUT ] param_name param_type characteristic: COMMENT 'string' | LANGUAGE SQL | [NOT] DETERMINISTIC | { CONTAINS SQL | NO SQL | READS SQL DATA | MODIFIES SQL DATA } | SQL SECURITY { DEFINER | INVOKER } routine_body: valid_sql_statement ``` 其中,`sp_name` 是存储过程的名称,`proc_parameter` 是存储过程的参数列表,`characteristic` 是存储过程的特性,`routine_body` 是存储过程的主体部分,包括一系列有效的 SQL 语句。 例如,下面的示例代码创建一个名为 `get_customer` 的存储过程,它接受一个客户 ID 作为输入参数,然后从 `customers` 表中检索出该客户的信息: ``` CREATE PROCEDURE get_customer (IN customer_id INT) BEGIN SELECT * FROM customers WHERE id = customer_id; END; ``` 在这个例子中,`IN customer_id INT` 指定了一个输入参数 `customer_id`,它的类型为 `INT`。`SELECT` 语句用于检索出指定客户 ID 的信息。该存储过程可以在需要的时候调用,例如: ``` CALL get_customer(123); ``` 这将检索出客户 ID 为 123 的客户信息。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值