高考数学不等式求最值的解题技巧(地位等价法)

本文介绍了高考数学中不等式求最值的一种方法——对称法(地位等价法)。通过确认对称、解等式和确定最值,该方法能直接应用于包含平方和式、和式与乘积项系数的题目。文中通过两道高考真题示例进行解析,并强调实践对于掌握解题技巧的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

作者:xvbomath
今天地同学们分享一个不等式求最值的方法对称法(地位等价法)这种方法是非常暴力。
在这里插入图片描述
知识点讲解:
步骤
(1)、确认对称
在这里插入图片描述
只要等号相等的情况下就能去的最值,不管是最大还是最小肯定是在等号取得的。那么我怎样想他确认对称?就要看条件,也需要看所求。一共三个式子:平方和式系数、和式系数、乘积项系数,一道题里三个系数至少出现两个。

在这里插入图片描述
取等解方程:
确认最值:
我们接下来所有题都是按照这个步骤来解析的!
我现在审第一题。我们会发现这道题包含了平方和式、和式与乘积项系数。那我该怎么解析这道题了。

在这里插入图片描述
这种方法只要取等得到的根可以直接写在答案上。不要纠结最大还是最小。

接下来看第二题是一道浙江高考真题。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值