各种数学不等式

1.琴生(Jensen)不等式(也称为詹森不等式)

以丹麦技术大学数学家约翰·延森(John Jensen)命名。它给出积分的凸函数值和凸函数的积分值间的关系。

在这里插入图片描述
在这里插入图片描述

2.柯西不等式

是数学家柯西(Cauchy)在研究数学分析中的“流数”问题时得到的。
在这里插入图片描述

2.2 卡尔松不等式(Carlson)

是柯西不等式的推广.
在这里插入图片描述

3.赫尔德不等式

赫尔德不等式是数学分析的一条不等式,取名自奥图·赫尔德(Otto Hölder)
在这里插入图片描述

4.闵可夫斯基不等式(Minkowski inequality)

是德国数学家赫尔曼·闵可夫斯基提出的重要不等式
在这里插入图片描述

5.伯努利不等式

在这里插入图片描述

6.均值不等式

在这里插入图片描述

7.切比雪夫不等式

19世纪俄国数学家切比雪夫研究统计规律中,论证并用标准差表达了一个不等式,这个不等式具有普遍的意义,被称作切比雪夫定理,其大意是:
任意一个数据集中,位于其平均数±m个标准差范围内的比例(或部分)总是至少为1-1/m2,其中m为大于1的任意正数。对于m=2,m=3和m=5有如下结果:
所有数据中,至少有3/4(或75%)的数据位于平均数2个标准差范围内。
所有数据中,至少有8/9(或88.9%)的数据位于平均数3个标准差范围内。
所有数据中,至少有24/25(或96%)的数据位于平均数5个标准差范围内 。

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI强仔

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值