不等式的最大值_高中数学:利用均值不等式求最值的方法

7a4247a0ba8e9b3da4c99a589d393112.gif

均值不等式

89e461805caa4f73b979d1f9352b8a31.png

当且仅当a=b时等号成立)是一个重要的不等式,利用它可以求解函数最值问题。对于有些题目,可以直接利用公式求解。但是有些题目必须进行必要的变形才能利用均值不等式求解。

一、配凑

1. 凑系数

例1. 当

dfdfd697717f109f08e6aa74011b6baa.png

时,求的最大值。

解析:由知,

ef46e8a7012ced1ca75d028b77a4821e.png

,利用均值不等式求最值,必须和为定值或积为定值,此题为两个式子积的形式,但其和不是定值。注意到

802b84179aa02a67641a802d317b5437.png

为定值,故只需将凑上一个系数即可。

75f69dafab238015ae9ec3f48836e1f4.png

当且仅当

4dc840af2c4b29d82f55dbb55aa87630.png

,即x=2时取等号。

所以当x=2时,的最大值为8。

小结:本题无法直接运用均值不等式求解,但凑系数后可得到和为定值,从而可利用均值不等式求最大值。

2. 凑项

例2. 已知

111ee6a61c3a41b9f5675604d7e89275.png

,求函数

3c15131def8d84e58b47deea4be1dbd1.png

的最大值。

解析:由题意知

25ba6f3d3e811d1ccb2040abcf2e816d.png

,首先要调整符号,又

4e1a0b3cfecb7e40b0c7e583c7b4aba6.png

不是定值,故需对

6b4a529b66949c46358e3c9c2b28584f.png

进行凑项才能得到定值。

6b27dab3b6f94696506c42d3069a1f49.png

671f32efdf14fde706e5424adb63922b.png 07fde2288261f7ecf33d160b86667d2c.png

当且仅当

e553cfd73ac647c2c8c8fb0c12e7f491.png

,即

ae8d698bc3f8a0da7fd3994f3e1289f7.png

时等号成立。

小结:本题需要调整项的符号,又要配凑项的系数,使其积为定值。

3. 分离

例3. 求

2065bdb8ceaca61dc3b01455dc1324eb.png

的值域。

解析:本题看似无法运用均值不等式,不妨将分子配方凑出含有(x+1)的项,再将其分离。

3599c72b6f1048c6048b545ca42e08d5.png

736e833ebf57bfa7e12598052e4ee0e3.png

,即

f2ed91f7802e51d1982d1007fae30671.png

5202fb82ee53c6be8a0b630171b75a51.png

(当且仅当x=1时取“=”号)。

d4c8d819ffd911dce940773b0839e1d4.png

,即

87820398bf58fb5e3b5cd155a1fcc723.png

e964fb36cdcc848c51049b63efe6aa00.png

(当且仅当x=-3时取“=”号)。

4d640eadf149c24fab5c359c3981258e.png

的值域为

ba66ec14ee2f754ea5d19192f5c6a1a6.png

小结:分式函数求最值,通常化成

7e86254a72463fc3cf8c2b1b123cd884.png

,g(x)恒正或恒负的形式,然后运用均值不等式来求最值。

二、整体代换

例4. 已知

355a2dbf39513a17b29dd62476090cbb.png

,求的最小值。

解法1:不妨将

13f29fee874b84e52c1b0160a8279f7e.png

乘以1,而1用a+2b代换。

0b0980f07669be71810c79ef018d8975.png 85e52eb23bb17a7e72a47ada2667aa21.png

当且仅当

a92a2cfa368133c9c6dd83be135859d4.png

时取等号,由

6e8a238390e9f9c92658d3781c0b7ec4.png

ee09caa10ab1957333afb55de38bf0e4.png

时,的最小值为

54b1c95b4c2e086e009931302d04031c.png

解法2:将分子中的1用

a7539583651ea4fec45a6c7f79c7587c.png

代换。

96ac35784d2d6e6df80c83976ff22431.png

小结:本题巧妙运用“1”的代换,得到

edd1354ab917006706299bd9684525db.png

,而

e954bf8e98f180f5939caf002137f150.png

75b512bb1c8039a0bc6fc42927bd7fb3.png

的积为定值,即可用均值不等式求得的最小值。

三、换元

例5. 求函数

fb641fb018bf229e9c66e6075a26a0e5.png

的最大值。

解析:变量代换,令

bcfafc99faf4ad16443f6340c7c88a41.png

,则

87ea6695fc6d9bb078504806023e2ad5.png

当t=0时,y=0

4bab15ab40456713afe75a96d896082a.png

时,

9a0d13554ec50ffc690810dd4929b897.png

当且仅当

0c23402640970637fb4ea57974257b3a.png

,即

4e3566f39ccc4ed328f30247f94b2995.png

时取等号。

89f2cf8b3960b5aa38dbe9666c4761cf.png

小结:本题通过换元法使问题得到了简化,而且将问题转化为熟悉的分式型函数的求最值问题,从而为构造积为定值创造有利条件。

四、取平方

例6. 求函数

2d04f23b762fd44e4ec5870bc2bc9d74.png

的最大值。

解析:注意到

38c7b46f259282b9787cf1e607446412.png

的和为定值。

334748ade46c026779d82f11ad2e546c.png

67ce15ec9317ac9d85cb87c04e4852e0.png

,所以

648633753e94a924541a977d0b8b6548.png

当且仅当

e819b06a13bbd586f0f70a509b8e40fd.png

,即

9c7f14daeef63ae86a540b3d57f8929a.png

时取等号。

e9531661ff7c9a4187888b45c771b679.png

小结:本题将解析式两边平方构造出“和为定值”,为利用均值不等式创造了条件。

总之,我们利用均值不等式求最值时,一定要注意“一正二定三相等”,同时还要注意一些变形技巧,积极创造条件利用均值不等式。

--END--

78359050186b113893fc73b0b1791a13.png 9c3ba86ac233f5960746c7bf679076e8.gif
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值