
均值不等式

当且仅当a=b时等号成立)是一个重要的不等式,利用它可以求解函数最值问题。对于有些题目,可以直接利用公式求解。但是有些题目必须进行必要的变形才能利用均值不等式求解。
一、配凑
1. 凑系数
例1. 当

时,求的最大值。
解析:由知,

,利用均值不等式求最值,必须和为定值或积为定值,此题为两个式子积的形式,但其和不是定值。注意到

为定值,故只需将凑上一个系数即可。

当且仅当

,即x=2时取等号。
所以当x=2时,的最大值为8。
小结:本题无法直接运用均值不等式求解,但凑系数后可得到和为定值,从而可利用均值不等式求最大值。
2. 凑项
例2. 已知

,求函数

的最大值。
解析:由题意知

,首先要调整符号,又

不是定值,故需对

进行凑项才能得到定值。
∵

∴


当且仅当

,即

时等号成立。
小结:本题需要调整项的符号,又要配凑项的系数,使其积为定值。
3. 分离
例3. 求

的值域。
解析:本题看似无法运用均值不等式,不妨将分子配方凑出含有(x+1)的项,再将其分离。

当

,即

时

(当且仅当x=1时取“=”号)。
当

,即

时

(当且仅当x=-3时取“=”号)。
∴

的值域为

。
小结:分式函数求最值,通常化成

,g(x)恒正或恒负的形式,然后运用均值不等式来求最值。
二、整体代换
例4. 已知

,求的最小值。
解法1:不妨将

乘以1,而1用a+2b代换。


当且仅当

时取等号,由

即

时,的最小值为

。
解法2:将分子中的1用

代换。

小结:本题巧妙运用“1”的代换,得到

,而

与

的积为定值,即可用均值不等式求得的最小值。
三、换元
例5. 求函数

的最大值。
解析:变量代换,令

,则

当t=0时,y=0
当

时,

当且仅当

,即

时取等号。
故

。
小结:本题通过换元法使问题得到了简化,而且将问题转化为熟悉的分式型函数的求最值问题,从而为构造积为定值创造有利条件。
四、取平方
例6. 求函数

的最大值。
解析:注意到

的和为定值。

又

,所以

当且仅当

,即

时取等号。
故

。
小结:本题将解析式两边平方构造出“和为定值”,为利用均值不等式创造了条件。
总之,我们利用均值不等式求最值时,一定要注意“一正二定三相等”,同时还要注意一些变形技巧,积极创造条件利用均值不等式。
--END--

