形象理解numpy.stack() / np.stack

本文通过实例深入解析numpy中的stack堆叠方法,详细阐述了如何在不同维度上堆叠数组,以及堆叠后新数组的维度变化规律。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

感觉好多教程都是举例子让自己理解,没有说清楚。本文将直观地解释stack堆叠方法。


变量,如代码所示:

import numpy as np
a = np.array([[1,2],[3,4],[5,6]])
b = np.array([[10,20],[30,40],[50,60]])

c = np.stack([a,b], axis = 0)
d = np.stack([a,b], axis = 1)
e = np.stack([a,b], axis = 2)

a和b的形状都是(3, 2),其维度的直观理解如下图所示(图中颜色框内的数字为索引序号):

在这里插入图片描述
在这里插入图片描述

stack堆叠起来,意味着原来的两维变成三维。“三维”也就是说堆叠的方式有三种:

  • 0维上堆叠,在新变量的0维上区分a,b,即把a,b直接作为新变量0维的元素并列起来。
    在这里插入图片描述

  • 1维上堆叠,在新变量的1维上区分a,b。
    在这里插入图片描述

  • 2维上堆叠,在新变量的2维上区分a,b。
    在这里插入图片描述

根据以上说明,很容易知道:n个变量在x维堆叠(axis=x),则堆叠产生的新变量的第x维的维数为n;或者说,新变量的shape值为原shape值在第x位插入数字n。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值