PR曲线与F值
PR曲线与ROC曲线都是评价一个机器学习算法的标准,那么不同点在哪里呢,首先我们还是看下面几个值:
- TP(真正) 实际正
- FP(假正) 实际负
- TN(真负) 实际负
- FN(假负) 实际正
与ROC曲线不同的是,PR曲线用(Precision)准确率和(Recall)召回率分别作为横纵坐标。
Precision = TP / (TP + FP)
Recall = TP / (TP + FN)
准确率就是说预测为正例的样本里面有多少真的是正例。
召回率就是说所有的正例里面有多少被我们预测为正例了。
F值 = 1 / (1/Precision + 1/Recall)
如果我们要求按照优先级先提升Precision和Recall其中的一个,应该怎么选呢。那么在我从事的个性化推荐与用户打交道的场景下,应该是提升Precision更好一些,毕竟Precison更高,ctr也会更高一些,用户的感知应该也是不太明显的。