Description:
Given an array of non-negative integers, you are initially positioned at the first index of the array.
Each element in the array represents your maximum jump length at that position.
Determine if you are able to reach the last index.
For example:
A = [2,3,1,1,4]
, return true
.
A = [3,2,1,0,4]
, return false
.
Solution:
一开始想用深度搜索算法(有回溯),但在公车上无法打码,看了看Solution,发现会导致[Stack Overflow],时间复杂度也挺高。还发现另外两个Dynamic Top-down, Dynamic Bottom-up 算法都有有诟病,分别是[Stack Overflow]和[Time limit Error]。
但是根据Solution的思路一路下来,从最开始的深搜,到标记搜索,再到反序标记搜索,直到最后一个贪心算法,也让我学到了解决问题的一种办法,多换角度思考。以下是Solution里的贪心算法,思想是直接从最右元素开始往左搜索,不采取标记或最大步数后减小步数方式,而是每搜索一个元素就判断是否能到达“最右”(不管通过什么方式),如果可以就将当前元素标记为“最右”,最后再判断0下标的元素是否为“最右”即可。
class Solution {
public:
bool canJump(vector<int>& nums) {
int mostLeftCanJump = nums.size() - 1;
for (int i = mostLeftCanJump - 1; i >= 0; i--) {
if (nums[i] + i >= mostLeftCanJump) {
mostLeftCanJump = i;
}
}
if (mostLeftCanJump == 0)
return true;
return false;
}
};