[LeetCode]54. Spiral Matrix

Description:

Given a matrix of m x n elements (m rows, n columns), return all elements of the matrix in spiral order.

For example,
Given the following matrix:

[
 [ 1, 2, 3 ],
 [ 4, 5, 6 ],
 [ 7, 8, 9 ]
]

You should return [1,2,3,6,9,8,7,4,5].

——————————————————————————————————————————————————————————————————————

Solution:

第一种想法是类似找迷宫出口,即先申请一个isvisited的bool数组用于标记已经走过的元素地址,重复思考一下发现没有必要浪费空间,因为题意要求的运动是很有规律的:从 左上角出发一直循环访问数组中每一个元素,所以只要能数学地表达出到达边界时做出的反应即可。这里使用了四个循环分别代表最上行从左到右、最右列从上到下、最下方从右到左、最左行从下到上。值得注意的是最左行从下到上时不能访问当前圈数的最左上角元素,否则就会陷入死循环,因此我们还需要一个标记circles记录当前圈数,这样就能自动不断缩小圈数循环。

class Solution {
public:
    vector<int> spiralOrder(vector<vector<int>>& matrix) {
        vector<int> result;
        if (matrix.size() <= 0)
            return result;
        
        int steps = 0, i = 0, j = 0, circles = 0;
        int m = matrix.size(), n = matrix[0].size();
        
        result.push_back(matrix[0][0]);
        steps++;
        
        while (steps < m * n) {
            while (steps < m * n && j < n - circles - 1) {
                j++;
                steps++;
                result.push_back(matrix[i][j]);
                //cout << "i: " << i << " j: " << j << " element: " << matrix[i][j] << " " << endl;
            }
            
            while (steps < m * n && i < m - circles - 1) {
                i++;
                steps++;
                result.push_back(matrix[i][j]);
                //cout << "i: " << i << " j: " << j << " element: " << matrix[i][j] << " " << endl;
            }
            
            while (steps < m * n && j > circles) {
                j--;
                steps++;
                result.push_back(matrix[i][j]);
                //cout << "i: " << i << " j: " << j << " element: " << matrix[i][j] << " " << endl;
            }
            
            while (steps < m * n && i > circles + 1) {
                i--;
                steps++;
                result.push_back(matrix[i][j]);
                //cout << "i: " << i << " j: " << j << " element: " << matrix[i][j] << " " << endl;
            }
            
            circles++;
        }
        
        return result;
    }
};


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值