FTRL的基础知识准备 part-1

本文介绍了FTRL在线学习算法的基础知识,包括评估函数Regret的概念及Regret Bound的上限,并深入探讨了凸函数、光滑函数、Lipschitz条件、对偶范数等相关理论,为理解FTRL的优化原理奠定基础。
摘要由CSDN通过智能技术生成

前言

  最近看了下在线学习FTRL的相关东东,对其背后的理论知识梳理下。
  假设loss 函数为 f(x) ,其中 ft(xt) 表示第 t 轮数据,在第 t 轮参数 xt 所对应的损失。

xt+1=argminxt=1tft(x)
  主要求证一个问题,上面这个取参数的策略在什么情况下有效?为什么有效?

1 评估函数 Regret

  假设loss 函数为 f(x) ,其中 ft(xt) 表示第 t 轮数据所对应的loss函数。 xt 表示 t 轮数据时,预测模型所对应的参数。
  那么,经过T轮数据后,每轮的损失叠加到一起,表示为: Tt=1ft(xt)
  假设,有个全局最理想的参数 x ,其对应的T轮数据后的,损失叠加到一起表示为: Tt=1ft(x)
  那么预测模型的经过T轮数据的损失总和与最理想状态的损失之和的差表示为:

Regret(x,ft)=t=1Tft(xt)t=1Tft(x)=t=1Tft(xt)f1:T(x)

  我们通常用 Regret(x,ft) 来衡量预测模型的好坏,可以看到,其差是越小越好。
  长远来看,平均的误差:
limT>+Regret(x,ft)T

2 Regret Bound

   lossregular ,(及其他约束函数) 选取得当的情况, Regret
   Regret
  1) General FTRL Bound
  假设 rt使h0:t+ft+1=r0:t+f1:t+11strongconvexw.s.t||||(t1)
  

Regret(x,ft)r0:T1(x)+12t=1T||gt||2(t1),

   2) FTRL - Proximal Bound
  假设 rt使h0:t=r0:t+f1:t1strongconvexw.s.
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值