【离散数学】重点、教材及解答

重点

  1. 命题逻辑
    不考公式翻译;
    重点: 等价式与重言式(如:公式化简,讨论法证重言式)
    推理证明(直接法,反证法, CP规则)
    主合取与主析取范式(大、小项,大、小项的下标,范式的演化)
  2. 谓词逻辑
    不考翻译;不考前束范式;
    重点: 谓词公式的等价式与重言式 (量词的作用,量词作用域的伸缩,…)
    推理证明(ES,US,EG,UG,直接,反证,CP)
  3. 集合
    集合元素计数(必考)
  4. 二元关系
    全部复习
    重点:闭包;
    等价关系与等价类(结合代数的陪集与拉格朗日定理);
    偏序关系与哈斯图(结合格);
    要点:可熟练证明关系的5大性质;
    偏序的8大元。
  5. 函数
    全部复习
    要点:可熟练证明入谢和满谢(结合同态与同构)
  6. 代数
    除同余关系与置换群外,全部复习
    重点:群论
    要点:可熟练证明群的4个性质;
    可熟练证明子群;
    可熟练写出子群,左陪集(划分),循环群生成元,元素的阶;
    可熟练应用拉格朗日定理;
    可熟练证明同态与同构;
    可熟练证明或写出同态核或同态像。

  7. 重点:判断格;判断子格;判断分配格(会说明理由); 判断有补格;写补元素

  8. 不考树(如:最小生成树)
    重点:图的各种基本性质(量化的性质);
    图的同构;
    欧拉图;
    平面图;
    对偶图与着色。

教材

《离散数学》左孝凌著
戳这里(密码:0gg1)

习题解析

戳这里(密码:h122)

复习资料

戳这里(密码:4yur)
(侵删)

©️2020 CSDN 皮肤主题: 数字20 设计师:CSDN官方博客 返回首页