离散数学第六章 格和布尔代数

本文介绍了离散数学中的核心概念,包括格的定义及其基本性质,如并运算和交运算的交换律、结合律、幂等律和吸收律。此外,详细阐述了分配格、模格、有界格和有补格的概念,特别是有补分配格的特性。布尔代数作为有补分配格的一个特例,其补运算和相关性质也被讨论。最后提到了原子在布尔格中的作用和有限布尔代数的结构。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

离散数学第六章 格和布尔代数


6-1格的概念

:设<A,≼>是一个偏序集,如果A中任意两个元素都有最小上界和最大下界,则称<A,≼>是格

并运算/交运算:a∨b=a和b的最小上界,a∧b=a和b的最大下界

子格:设<A,≼>是一个格,由<A,≼>诱导的代数系统为<A,∨,∧>,设B⊆A且B≠∅,如果A中的这两个运算∨和∧关于B是封闭的,则称<B,≼>是<A,≼>的子格(可证子格必成为格)

eg1.

在这里插入图片描述

格的基本性质

  • 在一个格<A,≼>中,对任意的a,b∈A,都有a≼a∨b,b≼a∨b,a∧b≼a,a∧b≼b

  • 在一个格<A,≼>中,对于a,b,c,d∈A,如果a≼b和c≼d,则a∨c≼b∨d,a∧c≼b∧d

  • 在一个格<A,≼>中,对于a,b,c∈A,如果b≼c,则a∨b≼a∨c,a∧b≼a∧c,这个性质称为格的保序性

  • 设<A,≼>是一个格,由格<A,≼>所诱导的代数系统为<A,∨,∧>,则对任意的a,b,c,d∈A,有:

    • 交换律:a∨b=b∨a,a∧b=b∧a
    • 结合律:a∨(b∨c)=(a∨b)∨c,a∧(b∧c)=(a∧b)∧c
    • 幂等律:a∨a=a,a∧a=a
    • 吸收律:a∨(a∧b)=a,a∧(a∨b)=a
  • 设<A,∨,∧>是一个代数系统,其中∨,∧都是二元运算且满足吸收性,则∨和∧都满足幂等性

  • 代数系统<A,∨,∧>,其中∨和∧都是二元运算且满足交换性、结合性和吸收性,则A上存在偏序关系≼,使<A,≼>是一个格

  • 在一个格<A,≼>中,对任意的a,b,c∈A,都有a∨(b∧c)≼(a∨b)∧(a∨c),(a∧b)∨(a∧c)≼a∧(b∨c)

  • 在一个格<A,≼>中,对任意的a,b∈A,有a≼b⇔a∧b=a⇔a∨b=b

  • 在一个格<A,≼>中,对任意的a,b,c∈A,有a≼c⇔a∨(b∧c)≼(a∨b)∧c

  • 在一个格<A,≼>中,对任意的a,b,c∈A,必有(a∧b)∨(a∧c)≼a∧(b∨(a∧c)),a∨(b∧(a∨c))≼(a∨b)∧(a∨c)

格同态/同构:

在这里插入图片描述

6-2 分配格

分配格:设<A,≼>是一个格,由它诱导的代数系统为<A,∨,∧>,如果对任意的a,b,c∈A,满足a∧(b∨c)=(a∧b)∨(a∧c)(交运算对于并运算可分配)和a∨(b∧c)=(a∨b)∧(a∨c)(并运算对于交运算可分配),则称<A,≼>是分配格

  • 如果在一个格中交运算对于并运算可分配,则并运算对交运算也一定是可分配的。反之亦然

  • 每个链是分配格

  • 设<A,≼>是一个分配格,那么对于任意的a,b,c∈A,如果有a∧b=a∧ca∨b=a∨c成立,则必有b=c(注意两个条件要同时满足)

  • 格<A,≼>是分配格当且仅当A中不含与钻石格(图a)或五角格(图b)同构的子格
    在这里插入图片描述

模格:设<A,≼>是一个格,由它诱导的代数系统为<A,∨,∧>,如果对任意的a,b,c∈A,当b≼a时,有a∧(b∨c)=b∨(a∧c),则称<A,≼>是模格

  • 在这里插入图片描述

  • 在这里插入图片描述

  • 分配格必定是模格


6-3 有补格

有界格

全下界:设<A,≼>是一个格,如果存在元素a∈A,对于任意的x∈A,都有a≼x(最小元),则称a为格<A,≼>的全下界,记格的全下界为0

  • 一个格若有全下界,则是唯一的

全上界:设<A,≼>是一个格,如果存在元素b∈A,对于任意的x∈A,都有x≼b(最大元),则称b为格<A,≼>的全上界,记格的全上界为1

  • 一个格若有全上界,则是唯一的

有界格:如果一个格中存在全下界和全上界,则称该格为有界格

  • 有界格≠有限格
  • 有限格一定是有界格,有界格不一定是有限格
  • 设<A,≼>是一个有界格,则对任意的a∈A,必有a∨1=1,a∧1=a,a∨0=a,a∧0=0

有补格

补元:设<A,≼>是一个有界格,对与A中的一个元素a,如果存在b∈A,使得a∨b=1和a∧b=0,则称元素b是元素a的补元

  • 如果a是b的补元,则b也是a的补元
  • 在有界格中一个元素可以没有补元,也可以有多个补元

有补格:在一个有界格中,如果每个元素都至少有一个补元素,则称此格为有补格

有补分配格:既是有补格,又是分配格的格

  • 在有界分配格中,若有一个元素有补元素,则必是唯一的
  • 我们把有补分配格中任一元素a的唯一补元记为ā

6-4 布尔代数

布尔代数

布尔格:一个有补分配格称为布尔格

补运算:设<A,≼>是一个布尔格,可以在A上确定一个一元运算“-”,使得ā为a的补元。我们把这个一元运算称为补运算,并把a和b的并(交)的补记为在这里插入图片描述

布尔代数:由布尔格<A,≼>,可以诱导一个代数系统<A,∨,∧,->,这个代数系统称为布尔代数

  • 对于布尔代数中任意两个元素a,b,必定有:在这里插入图片描述

  • 具有有限个元素的布尔代数称为有限布尔代数

  • 对于每一正整数n,必存在含有2ⁿ个元素的布尔代数;

    反之,任一有限布尔代数,它的元素个数必为2的幂次

在这里插入图片描述

  • 任何一个具有2ⁿ个元素的有限布尔代数都是同构的

原子

原子:设<A,≼>是一个格,且具有全下界0,如果有元素a盖住0,则称元素a为原子

  • 很明显,在格中若有原子a,b且a≠b,则必有a∧b=0

  • 原子不是唯一的

  • 设<A,≼>是一个具有全下界0的有限格,则对于任何一个非零元素b(即不等于全下界0的元素)至少存在一个原子a,使得a≼b

  • 在一个布尔格中,b∧ā=0当且仅当b≼a

  • 在这里插入图片描述

  • 在这里插入图片描述

  • 在一个布尔格<A,≼>中,对A中的任意一个原子b和另一个非零元素a,b≼a和b≼ā两式中有且仅有一式成立

  • 任一有限布尔代数,它的元素个数必为2ⁿ,其中n是该布尔格中所有原子的个数

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值