离散数学第六章 格和布尔代数
6-1格的概念
格:设<A,≼>是一个偏序集,如果A中任意两个元素都有最小上界和最大下界,则称<A,≼>是格
并运算/交运算:a∨b=a和b的最小上界,a∧b=a和b的最大下界
子格:设<A,≼>是一个格,由<A,≼>诱导的代数系统为<A,∨,∧>,设B⊆A且B≠∅,如果A中的这两个运算∨和∧关于B是封闭的,则称<B,≼>是<A,≼>的子格(可证子格必成为格)
eg1.
格的基本性质:
-
在一个格<A,≼>中,对任意的a,b∈A,都有a≼a∨b,b≼a∨b,a∧b≼a,a∧b≼b
-
在一个格<A,≼>中,对于a,b,c,d∈A,如果a≼b和c≼d,则a∨c≼b∨d,a∧c≼b∧d
-
在一个格<A,≼>中,对于a,b,c∈A,如果b≼c,则a∨b≼a∨c,a∧b≼a∧c,这个性质称为格的保序性
-
设<A,≼>是一个格,由格<A,≼>所诱导的代数系统为<A,∨,∧>,则对任意的a,b,c,d∈A,有:
- 交换律:a∨b=b∨a,a∧b=b∧a
- 结合律:a∨(b∨c)=(a∨b)∨c,a∧(b∧c)=(a∧b)∧c
- 幂等律:a∨a=a,a∧a=a
- 吸收律:a∨(a∧b)=a,a∧(a∨b)=a
-
设<A,∨,∧>是一个代数系统,其中∨,∧都是二元运算且满足吸收性,则∨和∧都满足幂等性
-
代数系统<A,∨,∧>,其中∨和∧都是二元运算且满足交换性、结合性和吸收性,则A上存在偏序关系≼,使<A,≼>是一个格
-
在一个格<A,≼>中,对任意的a,b,c∈A,都有a∨(b∧c)≼(a∨b)∧(a∨c),(a∧b)∨(a∧c)≼a∧(b∨c)
-
在一个格<A,≼>中,对任意的a,b∈A,有a≼b⇔a∧b=a⇔a∨b=b
-
在一个格<A,≼>中,对任意的a,b,c∈A,有a≼c⇔a∨(b∧c)≼(a∨b)∧c
-
在一个格<A,≼>中,对任意的a,b,c∈A,必有(a∧b)∨(a∧c)≼a∧(b∨(a∧c)),a∨(b∧(a∨c))≼(a∨b)∧(a∨c)
格同态/同构:
6-2 分配格
分配格:设<A,≼>是一个格,由它诱导的代数系统为<A,∨,∧>,如果对任意的a,b,c∈A,满足a∧(b∨c)=(a∧b)∨(a∧c)(交运算对于并运算可分配)和a∨(b∧c)=(a∨b)∧(a∨c)(并运算对于交运算可分配),则称<A,≼>是分配格
-
如果在一个格中交运算对于并运算可分配,则并运算对交运算也一定是可分配的。反之亦然
-
每个链是分配格
-
设<A,≼>是一个分配格,那么对于任意的a,b,c∈A,如果有a∧b=a∧c和a∨b=a∨c成立,则必有b=c(注意两个条件要同时满足)
-
格<A,≼>是分配格当且仅当A中不含与钻石格(图a)或五角格(图b)同构的子格
模格:设<A,≼>是一个格,由它诱导的代数系统为<A,∨,∧>,如果对任意的a,b,c∈A,当b≼a时,有a∧(b∨c)=b∨(a∧c),则称<A,≼>是模格
-
-
-
分配格必定是模格
6-3 有补格
有界格
全下界:设<A,≼>是一个格,如果存在元素a∈A,对于任意的x∈A,都有a≼x(最小元),则称a为格<A,≼>的全下界,记格的全下界为0
- 一个格若有全下界,则是唯一的
全上界:设<A,≼>是一个格,如果存在元素b∈A,对于任意的x∈A,都有x≼b(最大元),则称b为格<A,≼>的全上界,记格的全上界为1
- 一个格若有全上界,则是唯一的
有界格:如果一个格中存在全下界和全上界,则称该格为有界格
- 有界格≠有限格
- 有限格一定是有界格,有界格不一定是有限格
- 设<A,≼>是一个有界格,则对任意的a∈A,必有a∨1=1,a∧1=a,a∨0=a,a∧0=0
有补格
补元:设<A,≼>是一个有界格,对与A中的一个元素a,如果存在b∈A,使得a∨b=1和a∧b=0,则称元素b是元素a的补元
- 如果a是b的补元,则b也是a的补元
- 在有界格中一个元素可以没有补元,也可以有多个补元
有补格:在一个有界格中,如果每个元素都至少有一个补元素,则称此格为有补格
有补分配格:既是有补格,又是分配格的格
- 在有界分配格中,若有一个元素有补元素,则必是唯一的
- 我们把有补分配格中任一元素a的唯一补元记为ā
6-4 布尔代数
布尔代数
布尔格:一个有补分配格称为布尔格
补运算:设<A,≼>是一个布尔格,可以在A上确定一个一元运算“-”,使得ā为a的补元。我们把这个一元运算称为补运算,并把a和b的并(交)的补记为
布尔代数:由布尔格<A,≼>,可以诱导一个代数系统<A,∨,∧,->,这个代数系统称为布尔代数
-
对于布尔代数中任意两个元素a,b,必定有:
-
具有有限个元素的布尔代数称为有限布尔代数
-
对于每一正整数n,必存在含有2ⁿ个元素的布尔代数;
反之,任一有限布尔代数,它的元素个数必为2的幂次
- 任何一个具有2ⁿ个元素的有限布尔代数都是同构的
原子
原子:设<A,≼>是一个格,且具有全下界0,如果有元素a盖住0,则称元素a为原子
-
很明显,在格中若有原子a,b且a≠b,则必有a∧b=0
-
原子不是唯一的
-
设<A,≼>是一个具有全下界0的有限格,则对于任何一个非零元素b(即不等于全下界0的元素)至少存在一个原子a,使得a≼b
-
在一个布尔格中,b∧ā=0当且仅当b≼a
-
-
-
在一个布尔格<A,≼>中,对A中的任意一个原子b和另一个非零元素a,b≼a和b≼ā两式中有且仅有一式成立
-
任一有限布尔代数,它的元素个数必为2ⁿ,其中n是该布尔格中所有原子的个数