资源限制
时间限制:1.0s 内存限制:512.0MB
问题描述
Huffman树在编码中有着广泛的应用。在这里,我们只关心Huffman树的构造过程。
给出一列数{pi}={p0, p1, …, pn-1},用这列数构造Huffman树的过程如下:
1. 找到{pi}中最小的两个数,设为pa和pb,将pa和pb从{pi}中删除掉,然后将它们的和加入到{pi}中。这个过程的费用记为pa + pb。
2. 重复步骤1,直到{pi}中只剩下一个数。
在上面的操作过程中,把所有的费用相加,就得到了构造Huffman树的总费用。
本题任务:对于给定的一个数列,现在请你求出用该数列构造Huffman树的总费用。
例如,对于数列{pi}={5, 3, 8, 2, 9},Huffman树的构造过程如下:
1. 找到{5, 3, 8, 2, 9}中最小的两个数,分别是2和3,从{pi}中删除它们并将和5加入,得到{5, 8, 9, 5},费用为5。
2. 找到{5, 8, 9, 5}中最小的两个数,分别是5和5,从{pi}中删除它们并将和10加入,得到{8, 9, 10},费用为10。
3. 找到{8, 9, 10}中最小的两个数,分别是8和9,从{pi}中删除它们并将和17加入,得到{10, 17},费用为17。
4. 找到{10, 17}中最小的两个数,分别是10和17,从{pi}中删除它们并将和27加入,得到{27},费用为27。
5. 现在,数列中只剩下一个数27,构造过程结束,总费用为5+10+17+27=59。
输入格式
输入的第一行包含一个正整数n(n<=100)。
接下来是n个正整数,表示p0, p1, …, pn-1,每个数不超过1000。
输出格式
输出用这些数构造Huffman树的总费用。
样例输入
5
5 3 8 2 9
样例输出
59
这题可以排序后取出最小的两个数,把数放进去再排序,依次循环,直至数组里只剩一个数。当然…还有更简便的方法,那就是使用优先队列,我们可以利用c++ STL库中的队列模板来解决这道题。
#include<iostream>
#include<queue>
#include<vector>
using namespace std;
int main()
{
priority_queue<int,vector<int>,greater<int> > pq;
int n,ans=0; //greater声明队列为升序优先的(小顶堆)
cin>>n; //要是直接priority_queue<int>则默认是降序优先(大顶堆)
for(int i=0;i<n;i++)
{
int t;
if(cin>>t)
pq.push(t);
}
while(pq.size()>=2) //直至数组里只有一个元素时退出
{
int a = pq.top(); pq.pop(); //取队首,并弹出
int b = pq.top(); pq.pop();
ans += (a+b); //费用
pq.push(a+b); //压入新值
}
cout<<ans;
}