蓝桥基础练习 Huffuman树

问题描述
  Huffman树在编码中有着广泛的应用。在这里,我们只关心Huffman树的构造过程。
  给出一列数{ pi}={ p 0p 1, …,  pn -1},用这列数构造Huffman树的过程如下:
  1. 找到{ pi}中最小的两个数,设为 papb,将 papb从{ pi}中删除掉,然后将它们的和加入到{ pi}中。这个过程的费用记为 pa +  pb
  2. 重复步骤1,直到{ pi}中只剩下一个数。
  在上面的操作过程中,把所有的费用相加,就得到了构造Huffman树的总费用。
  本题任务:对于给定的一个数列,现在请你求出用该数列构造Huffman树的总费用。

  例如,对于数列{ pi}={5, 3, 8, 2, 9},Huffman树的构造过程如下:
  1. 找到{5, 3, 8, 2, 9}中最小的两个数,分别是2和3,从{ pi}中删除它们并将和5加入,得到{5, 8, 9, 5},费用为5。
  2. 找到{5, 8, 9, 5}中最小的两个数,分别是5和5,从{ pi}中删除它们并将和10加入,得到{8, 9, 10},费用为10。
  3. 找到{8, 9, 10}中最小的两个数,分别是8和9,从{ pi}中删除它们并将和17加入,得到{10, 17},费用为17。
  4. 找到{10, 17}中最小的两个数,分别是10和17,从{ pi}中删除它们并将和27加入,得到{27},费用为27。
  5. 现在,数列中只剩下一个数27,构造过程结束,总费用为5+10+17+27=59。
输入格式
  输入的第一行包含一个正整数 nn<=100)。
  接下来是 n个正整数,表示 p 0p 1, …,  pn -1,每个数不超过1000。
输出格式
  输出用这些数构造Huffman树的总费用。
样例输入
5
5 3 8 2 9
样例输出

59


我不是VIP所以没法提交测试,就过了样例。不卡时间的话,这简直是一个超级大水题。考察vector的使用?

#include<iostream>
#include<algorithm>
#include<vector>
using namespace std;
int main()
{
	int n, num,ans;
	vector<int> v;
#pragma warning( disable : 4996)
	freopen("d://in.txt", "r", stdin);
	while (cin >> n)
	{
		ans = 0;
		v.clear();
		while (n--)
		{
			cin >> num;
			v.push_back(num);
		}
		sort(v.begin(), v.end());
		
		while (v.size() > 1)
		{
			ans += v[0] + v[1];
			v.push_back(v[0] + v[1]);
			v.erase(v.begin());
			v.erase(v.begin());
			sort(v.begin(), v.end());
		}
		cout << ans << endl;
	}
    return 0;
}

上选点是蓝桥杯Java题目中的一种类型,通常需要在给定的结构中选择一个或多个节点作为目标节点,并进行相应的操作。下面是一个简单的上选点蓝桥Java题解的示例: 题目描述: 给定一棵有N个节点的,每个节点上都有一个非负整数值。现在需要选择一些节点,使得选择的节点的值之和最大,且所选节点不能相邻(即选了一个节点,则其父节点和子节点都不能选)。请编写一个程序,计算出最大的节点值之和。 解题思路: 这是一个典型的动态规划问题。我们可以定义一个数组dp,其中dp[i]表示以第i个节点为根节点的子中所选节点的最大值之和。对于每个节点i,有两种情况: 1. 选择节点i:则其子节点都不能选,所以dp[i] = val[i] + dp[grandchild1] + dp[grandchild2] + ... 2. 不选择节点i:则其子节点可以选择或不选择,所以dp[i] = max(dp[child1], dp[child2], ...) 根据以上思路,我们可以使用递归或者迭代的方式来计算dp数组。最终,所求的最大值即为dp,其中1表示根节点。 代码示例: ```java public class TreeSelectPoint { public static void main(String[] args) { int[] values = {0, 1, 2, 3, 4, 5}; // 节点值数组,下标从1开始 int[][] edges = {{1, 2}, {1, 3}, {2, 4}, {2, 5}}; // 的边关系数组 int n = values.length - 1; // 节点个数 int[] dp = new int[n + 1]; // 动态规划数组 // 构建的邻接表 List<List<Integer>> adjacencyList = new ArrayList<>(); for (int i = 0; i <= n; i++) { adjacencyList.add(new ArrayList<>()); } for (int[] edge : edges) { int u = edge[0]; int v = edge[1]; adjacencyList.get(u).add(v); adjacencyList.get(v).add(u); } dfs(1, -1, values, adjacencyList, dp); // 从根节点开始进行深度优先搜索 System.out.println(dp[1]); // 输出最大节点值之和 } private static void dfs(int cur, int parent, int[] values, List<List<Integer>> adjacencyList, int[] dp) { dp[cur] = values[cur]; // 初始化当前节点的dp值为节点值 for (int child : adjacencyList.get(cur)) { if (child != parent) { // 避免重复访问父节点 dfs(child, cur, values, adjacencyList, dp); dp[cur] += dp[child]; // 更新当前节点的dp值 } } } } ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值