问题描述
Huffman树在编码中有着广泛的应用。在这里,我们只关心Huffman树的构造过程。
给出一列数{ pi}={ p 0, p 1, …, pn -1},用这列数构造Huffman树的过程如下:
1. 找到{ pi}中最小的两个数,设为 pa和 pb,将 pa和 pb从{ pi}中删除掉,然后将它们的和加入到{ pi}中。这个过程的费用记为 pa + pb。
2. 重复步骤1,直到{ pi}中只剩下一个数。
在上面的操作过程中,把所有的费用相加,就得到了构造Huffman树的总费用。
本题任务:对于给定的一个数列,现在请你求出用该数列构造Huffman树的总费用。
例如,对于数列{ pi}={5, 3, 8, 2, 9},Huffman树的构造过程如下:
1. 找到{5, 3, 8, 2, 9}中最小的两个数,分别是2和3,从{ pi}中删除它们并将和5加入,得到{5, 8, 9, 5},费用为5。
2. 找到{5, 8, 9, 5}中最小的两个数,分别是5和5,从{ pi}中删除它们并将和10加入,得到{8, 9, 10},费用为10。
3. 找到{8, 9, 10}中最小的两个数,分别是8和9,从{ pi}中删除它们并将和17加入,得到{10, 17},费用为17。
4. 找到{10, 17}中最小的两个数,分别是10和17,从{ pi}中删除它们并将和27加入,得到{27},费用为27。
5. 现在,数列中只剩下一个数27,构造过程结束,总费用为5+10+17+27=59。
给出一列数{ pi}={ p 0, p 1, …, pn -1},用这列数构造Huffman树的过程如下:
1. 找到{ pi}中最小的两个数,设为 pa和 pb,将 pa和 pb从{ pi}中删除掉,然后将它们的和加入到{ pi}中。这个过程的费用记为 pa + pb。
2. 重复步骤1,直到{ pi}中只剩下一个数。
在上面的操作过程中,把所有的费用相加,就得到了构造Huffman树的总费用。
本题任务:对于给定的一个数列,现在请你求出用该数列构造Huffman树的总费用。
例如,对于数列{ pi}={5, 3, 8, 2, 9},Huffman树的构造过程如下:
1. 找到{5, 3, 8, 2, 9}中最小的两个数,分别是2和3,从{ pi}中删除它们并将和5加入,得到{5, 8, 9, 5},费用为5。
2. 找到{5, 8, 9, 5}中最小的两个数,分别是5和5,从{ pi}中删除它们并将和10加入,得到{8, 9, 10},费用为10。
3. 找到{8, 9, 10}中最小的两个数,分别是8和9,从{ pi}中删除它们并将和17加入,得到{10, 17},费用为17。
4. 找到{10, 17}中最小的两个数,分别是10和17,从{ pi}中删除它们并将和27加入,得到{27},费用为27。
5. 现在,数列中只剩下一个数27,构造过程结束,总费用为5+10+17+27=59。
输入格式
输入的第一行包含一个正整数
n(
n<=100)。
接下来是 n个正整数,表示 p 0, p 1, …, pn -1,每个数不超过1000。
接下来是 n个正整数,表示 p 0, p 1, …, pn -1,每个数不超过1000。
输出格式
输出用这些数构造Huffman树的总费用。
样例输入
5
5 3 8 2 9
5 3 8 2 9
样例输出
59
我不是VIP所以没法提交测试,就过了样例。不卡时间的话,这简直是一个超级大水题。考察vector的使用?
#include<iostream>
#include<algorithm>
#include<vector>
using namespace std;
int main()
{
int n, num,ans;
vector<int> v;
#pragma warning( disable : 4996)
freopen("d://in.txt", "r", stdin);
while (cin >> n)
{
ans = 0;
v.clear();
while (n--)
{
cin >> num;
v.push_back(num);
}
sort(v.begin(), v.end());
while (v.size() > 1)
{
ans += v[0] + v[1];
v.push_back(v[0] + v[1]);
v.erase(v.begin());
v.erase(v.begin());
sort(v.begin(), v.end());
}
cout << ans << endl;
}
return 0;
}