数据挖掘基础方法-概率统计-1. 随机事件与随机变量

得益于刚刚结课的《概率论与数理统计》,对于随机事件,连续型和离散型变量和概率分布,条件概率,古典概型,等可能概型,几何概型,期望、方差和协方差的基本概念都比较熟悉,在这里就不多叙述了,其基础概念还是很容易学明白的。值得一提的是全概率公式和贝叶斯公式。

全概率公式和贝叶斯公式

首先我们看一下概率乘法公式和样本空间划分的定义;
由条件概率公式,可以得到概率的乘法公式:
$P(AB)=P(B|A)P(A) =P(A|B)P(B) $
如果事件组,满足
B 1 , B 2 , . . . B_1,B_2,... B1,B2,... 两两互斥,即 B i ∩ B j = ϕ , i ≠ j , i , j = 1 , 2 , . . . B_i\cap B_j = \phi,i \neq j ,i,j = 1,2,... BiBj=ϕi=j,i,j=1,2,...,且 P ( B i ) > 0 , i = 1 , 2 , . . . P(B_i)>0,i=1,2,... P(Bi)>0,i=1,2,...
B 1 ∪ B 2 ∪ . . . = Ω B_1 \cup B_2 \cup ... = \Omega B1B2...=Ω
​ 则称事件组 B 1 , B 2 , . . . B_1,B_2,... B1,B2,...是样本空间 Ω \Omega Ω 的一个划分。

全概率公式

B 1 , B 2 , . . . B_1,B_2,... B1,B2,...是样本空间 $ \Omega$ 的一个划分, A A A 为任一事件,则
P ( A ) = ∑ i = 1 ∞ P ( B i ) P ( A ∣ B i ) P(A) = \sum_{i=1}^{\infty } {P(B_i)}P(A|B_i) P(A)=i=1P(Bi)P(ABi)
称为全概率公式。

根据全概率公式和概率乘法公式,我们可以得到:
贝叶斯公式
B 1 , B 2 , . . . B_1,B_2,... B1,B2,...是样本空间 $ \Omega$ 的一个划分,则对任一事件 A ( P ( A ) > 0 ) A(P(A)>0) A(P(A)>0) ,有
​ $P(B_i|A) =\frac {P(B_i A)} {P(A)} = \frac {P(A|B_i )P(B_i)} {\sum_{j=1}^{\infty }P( B_j)P(A|B_j)} ,i=1,2,… $
称上式为贝叶斯公式,称 P ( B i ) ( i = 1 , 2 , . . . ) P(B_i)(i=1,2,...) P(Bi)(i=1,2,...) 为先验概率, P ( B i ∣ A ) ( i = 1 , 2 , . . . ) P(B_i|A)(i=1,2,...) P(BiA)i=1,2,...为后验概率。

​ 在实际中,常取对样本空间 Ω \Omega Ω 的有限划分 B 1 , B 2 , . . . , B n B_1,B_2,...,B_n B1,B2,...,Bn B i B_i Bi 视为导致试验结果 A A A 发生的“原因”,而 P ( B i ) P(B_i) P(Bi) 表示各种“原因”发生的可能性大小,故称为先验概率; P ( B i ∣ A ) P(B_i|A) P(BiA) 则反应当试验产生了结果 A A A 之后,再对各种“原因”概率的新认识,故称为后验概率 。

贝叶斯公式也是在机器学习中朴素贝叶斯的核心。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值