以前总是觉得都明白,再系统看一下书,发现记忆还是不牢靠。 现在写下来,以后应该对基本概念掌握好!! 首先邻域的概念有4邻域,8邻域之分。其中8邻域=4邻域+对角邻域。 邻接:两个像素接触,则它们是邻接的。一个像素和它的邻域中的像素是接触的。邻接仅考虑像素的空间关系。 连接:(1)是邻接的。(2)灰度值(或其他属性)满足某个特定的相似准则(灰度相等或在某个集合中等条件)。 这样我们就有了4-连接,8-连接和m-连接的概念,这些概念我在上图像处理课的时候理解的不好,这里详细讲一下。 “混合连接实质上是在像素间同时存在4-连接和8-连接时,优先采用4-连接,并屏蔽两个和同一像素间存在4-连接的像素之间的8-连接。”这是《图像工程》中的原话,我觉得对m-连接的概念讲得比较好理解,而且印象深刻。 说来也好理解,这种m-连接的引入目的之一就是消除8-连接的多路问题。8-连接在像素距离的选择时有多种路径,引发歧义,而m-连接则没有。 连通:说白了和图里的节点连通性道理一样。就是两个像素之间,如果有一条通路能把它们连接起来,那么就是连通的了。当然,连接是连通的一种特例,就是在两个邻近的像素之间的连通。对应连接的概念,连通也分4-连通和8-连通。 在像素的邻接和连通定义我们都熟知后,其实还有比较复杂点的概念引入,那就是像素集合的邻接和连通。如果把一幅图像看做是所有像素的集合,那么根据像素间的关系则可把像素结合成图像的子集合。那么显然这些子集也满足像图像像素元素那样的连通和连接性质(这个应该可以归纳证明的~~这里偷个懒吧囧)。对图像子集S中的任何一个像素p,所有和p相连通又在S中的像素的集合合起来称为S中的一个连通组元。如果S只有一个连通组元,即S中所有像素都互相连通,那么S就是一个连通集。如果一幅图像的所有像素都分属于几个连通集,则可以说这几个连通集是整个图像的连通组元。图像里的每个连通集构成图像的一个区域,这样我们就引入了区域的概念。P.S.正好前段时间做了区域增长的图像分割,看到这里好亲切啊!~~一个区域的边界(区域轮廓)将区域之间分开。 |
关于像素的邻接,连接和连通
最新推荐文章于 2024-09-06 16:43:49 发布
关于像素的邻接,连接和连通