量化感知训练实践:实现精度无损的模型压缩和推理加速

简介:本文以近期流行的YOLOX[8]目标检测模型为例,介绍量化感知训练的原理流程,讨论如何实现精度无损的实践经验,并展示了量化后的模型能够做到精度不低于原始浮点模型,模型压缩4X、推理加速最高2.3X的优化效果。

1. 概述

对深度学习模型进行低比特量化,可以有效地降低模型部署时在存储、计算、通信上的开销,是一种常见的模型压缩和推理优化技术。然而,模型量化在实际应用中仍然存在不少挑战,最为常见的问题就是模型精度下降(如无特殊说明,本文中“模型精度”是指准确率等模型应用于具体任务的效果指标)。以计算机视觉领域为例,在目标检测、图像分割等复杂任务上,量化带来的精度下降更为明显。

通过在模型训练阶段引入量化相关约束,即量化感知训练(Quantization-aware training,QAT),能够更好地解决模型量化的精度问题。本文以近期流行的YOLOX[8]目标检测模型为例,介绍量化感知训练的原理流程,讨论如何实现精度无损的实践经验,并展示了量化后的模型能够做到精度不低于原始浮点模型,模型压缩4X、推理加速最高2.3X的优化效果

2. 量化原理

在数字信号处理领域,量化是指将信号的连续取值(或者大量可能的离散取值)近似为有限多个(或较少的)离散值的过程。具体到深度学习领域,模型量化是指将浮点激活值或权重(通常以32比特浮点数表示)近似为低比特的整数(16比特或8比特),进而在低比特的表示下完成计算的过程。通常而言,模型量化可以压缩模型参数,进而降低模型存储开销;并且通过降低访存和有效利用低比特计算指令等,能够取得推理速度的提升,这对于在资源受限设备上部署模型尤为重要。

给定浮点类型的值,可以通过如下公式将它转化成8比特量化值:

 其中,表示量化的scale,分别表示量化值域的最小值与最大值,表示输入浮点值,表示量化后的值。量化值转化为浮点值只需执行反操作即可:

 进一步的,在将输入数据和权重进行量化后,我们就能够将神经网络的常见操作转换为量化操作。以卷积操作为例,其量化版本典型的计算流程如图1所示:

图1 典型的量化卷积算子计算流程图

  1. 权重与输入先量化成8bit,进行卷积操作,用32bit来存储中间结果;
  2. bias量化为32bit,与进行相加为
  3. 利用、以及的量化scale将32bit的转化为8bit的
  4. 如果该层的下一层也是量化OP,则可直接输出给下一层;如果是非量化OP,则将
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值