面向长代码序列的 Transformer 模型优化方法,提升长代码场景性能

阿里云机器学习平台PAI与华东师范大学高明教授团队合作在SIGIR2022上发表了结构感知的稀疏注意力Transformer模型SASA,这是面向长代码序列的Transformer模型优化方法,致力于提升长代码场景下的效果和性能。由于self-attention模块的复杂度随序列长度呈次方增长,多数编程预训练语言模型(Programming-based Pretrained Language Models, PPLM)采用序列截断的方式处理代码序列。SASA方法将self-attention的计算稀疏化,同时结合了代码的结构特性,从而提升了长序列任务的性能,也降低了内存和计算复杂度。

论文:Tingting Liu, Chengyu Wang, Cen Chen, Ming Gao, and Aoying Zhou. Understanding Long Programming Languages with Structure-Aware Sparse Attention. SIGIR 2022

模型框架

下图展示了SASA的整体框架:

其中,SASA主要包含两个阶段:预处理阶段和Sparse Transformer训练阶段。在预处理阶段得到两个token之间的交互矩阵,一个是top-k frequency矩阵,一个是AST pattern矩阵。Top-k frequency矩阵是利用代码预训练语言模型在CodeSearchNet语料上学习token之间的attention交互频率,AST pattern矩阵是解析代码的抽象语法树(Abstract Syntax Tree,AST ),根

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值