Java单元测试典型案例集锦

本文列举了Java单元测试中遇到的典型问题,包括无效验证问题、测试方法问题、链式调用、虚基类测试、策略模式测试、Lambda表达式测试以及多线程并发编程的测试,提供了相应的解决方案和测试用例示例,旨在帮助开发者更好地进行单元测试实践。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

近期,阿里巴巴CTO线卓越工程小组举办了阿里巴巴第一届单元测试比赛《这!就是单测》并取得了圆满成功。本人有幸作为评委,在仔细地阅读了各个小组的单元测试用例后,发现了大单元测试问题:

  1. 无效验证问题:不进行有效地验证数据对象、抛出异常和调用方法。
  2. 测试方法问题:不知道如何测试某些典型案例,要么错误地测试、要么不进行测试、要么利用集成测试来保证覆盖率。比如:
    ①错误地测试:利用测试返回节点占比来测试随机负载均衡策略;
    ②不进行测试:没有人针对虚基类进行单独地测试;
    ③利用集成测试:很多案例中,直接注入真实依赖对象,然后一起进行集成测试。

针对无效验证问题,在我的ATA文章《那些年,我们写过的无效单元测试》中,介绍了如何识别和解决单元测试无效验证问题,这里就不再累述了。在本文中,作者收集了一些的Java单元测试典型案例,主要是为了解决这个测试方法问题

1. 如何测试不可达代码

在程序代码中,由于无法满足进入条件,永远都不会执行到的代码,我们称之为"不可达代码"。不可达代码的危害主要有:复杂了代码逻辑,增加了代码运行和维护成本。不可达代码是可以由单元测试检测出来的——不管如何构造单元测试用例,都无法覆盖到不可达代码。

1.1. 案例代码

在下面的案例代码中,就存在一段不可达代码。

/**
 * 交易订单服务类
 */
@Service
public class TradeOrderService {
    /** 注入依赖对象 */
    /** 交易订单DAO */
    @Autowired
    private TradeOrderDAO tradeOrderDAO;

    /**
     * 查询交易订单
     * 
     * @param orderQuery 订单查询
     * @return 交易订单分页
     */
    public PageDataVO<TradeOrderVO> queryTradeOrder(TradeOrderQueryVO orderQuery) {
        // 查询交易订单
        // 查询交易订单: 总共数量
        Long totalSize = tradeOrderDAO.countByCondition(orderQuery);
        // 查询交易订单: 数据列表
        List<TradeOrderVO> dataList = null;
        if (NumberHelper.isPositive(totalSize)) {
            List<TradeOrderDO> tradeOrderList = tradeOrderDAO.queryByCondition(orderQuery);
            if (CollectionUtils.isNotEmpty(tradeOrderList)) {
                dataList = convertTradeOrders(tradeOrderList);
            }
        }

        // 返回分页数据
        return new PageDataVO<>(totalSize, dataList);
    }

    /**
     * 转化交易订单列表
     * 
     * @param tradeOrderList 交易订单DO列表
     * @return 交易订单VO列表
     */
    private static List<TradeOrderVO> convertTradeOrders(List<TradeOrderDO> tradeOrderList) {
        // 检查订单列表
        if (CollectionUtils.isEmpty(tradeOrderList)) {
            return Collections.emptyList();
        }

        // 转化订单列表
        return tradeOrderList.stream().map(TradeOrderService::convertTradeOrder)
            .collect(Collectors.toList());
    }

    /**
     * 转化交易订单
     * 
     * @param tradeOrder 交易订单DO
     * @return 交易订单VO
     */
    private static TradeOrderVO convertTradeOrder(TradeOrderDO tradeOrder) {
        TradeOrderVO tradeOrderVO = new TradeOrderVO();
        tradeOrderVO.setId(tradeOrder.getId());
        // ...
        return tradeOrderVO;
    }
}

由于方法convertTradeOrders(转化交易订单列表)传入的参数tradeOrderList(交易订单列表)不可能为空,所以“检查订单列表”这段代码是不可达代码。

// 检查订单列表
        if (CollectionUtils.isEmpty(tradeOrderList)) {
            return Collections.emptyList();
        }

1.2. 方案1:删除不可达代码(推荐)

最简单的方法,就是删除方法convertTradeOrders(转化交易订单列表)中的不可达代码。

/**
 * 转化交易订单列表
 * 
 * @param tradeOrderList 交易订单DO列表
 * @return 交易订单VO列表
 */
private static List<TradeOrderVO> convertTradeOrders(List<TradeOrderDO> tradeOrderList) {
    return tradeOrderList.stream().map(TradeOrderService2::convertTradeOrder)
        .collect(Collectors.toList());
}

1.3. 方案2:利用不可达代码(推荐)

还有一种方法,把不可达代码利用起来,可以降低方法queryTradeOrder(查询交易订单)的代码复杂度。

/**
 * 查询交易订单
 * 
 * @param orderQuery 订单查询
 * @return 交易订单分页
 */
public PageDataVO<TradeOrderVO> queryTradeOrder(TradeOrderQueryVO orderQuery) {
    // 查询交易订单
    // 查询交易订单: 总共数量
    Long totalSize = tradeOrderDAO.countByCondition(orderQuery);
    // 查询交易订单: 数据列表
    List<TradeOrderVO> dataList = null;
    if (NumberHelper.isPositive(totalSize)) {
        List<TradeOrderDO> tradeOrderList = tradeOrderDAO.queryByCondition(orderQuery);
        dataList = convertTradeOrders(tradeOrderList);
    }

    // 返回分页数据
    return new PageDataVO<>(totalSize, dataList);
}

1.4. 方案3:测试不可达代码(不推荐)

对于一些祖传代码,有些小伙伴不敢删除代码。在某些情况下,可以针对不可达代码进行单独测试。

/**
 * 测试: 转化交易订单列表-交易订单列表为空
 * 
 * @throws Exception 异常信息
 */
@Test
public void testConvertTradeOrdersWithTradeOrderListEmpty() throws Exception {
    List<TradeOrderDO> tradeOrderList = null;
    Assert.assertSame("交易订单列表不为空", Collections.emptyList(),
        Whitebox.invokeMethod(TradeOrderService1.class, "convertTradeOrders", tradeOrderList));
}

2. 如何测试内部的构造方法

在这次单元测试总决赛中,有一个随机负载均衡策略,需要针对Random(随机数)进行单元测试。

2.1. 代码案例

按照题目要求,编写了一个简单的随机负载均衡策略。

/**
 * 随机负载均衡策略类
 */
public class RandomLoadBalanceStrategy implements LoadBalanceStrategy {
    /**
     * 选择服务节点
     * 
     * @param serverNodeList 服务节点列表
     * @param clientRequest 客户请求
     * @return 服务节点
     */
    @Override
    public ServerNode selectNode(List<ServerNode> serverNodeList, ClientRequest clientRequest) {
        // 检查节点列表
        if (CollectionUtils.isEmpty(serverNodeList)) {
            return null;
        }

        // 计算随机序号
        int totalWeight = serverNodeList.stream().mapToInt(ServerNode::getWeight).sum();
        int randomIndex = new Random().nextInt(totalWeight);

        // 查找对应节点
        for (ServerNode serverNode : serverNodeList) {
            int currentWeight = serverNode.getWeight();
            if (currentWeight > randomIndex) {
                return serverNode;
            }
            randomIndex -= currentWeight;
        }
        return null;
    }
}

2.2. 方法1:直接测试法(不推荐)

有些参赛选手,不知道如何测试随机数(主要原因是因为不知道如何Mock构造方法),所以直接利用测试返回节点占比来测试随机负载均衡策略。

/**
 * 随机负载均衡策略测试类
 */
@RunWith(MockitoJUnitRunner.class)
public class RandomLoadBalanceStrategyTest {
    /** 定义测试对象 */
    /** 随机负载均衡策略 */
    @InjectMocks
    private RandomLoadBalanceStrategy randomLoadBalanceStrategy;

    /**
     * 测试: 选择服务节点-随机
     * 
     * @throws Exception 异常信息
     */
    @Test
    public void testSelectNodeWithRandom() throws Exception {
        int nodeCount1 = 0;
        int nodeCount2 = 0;
        int nodeCount3 = 0;
        ServerNode serverNode1 = new ServerNode(1L, 10);
        ServerNode serverNode2 = new ServerNode(2L, 20);
        ServerNode serverNode3 = new ServerNode(3L, 30);
        List<ServerNode> serverNodeList = Arrays.asList(serverNode1, serverNode2, serverNode3);
        ClientRequest clientRequest = new ClientRequest();
        for (int i = 0; i < 1000; i++) {
            ServerNode serviceNode = randomLoadBalanceStrategy.selectNode(serverNodeList, clientRequest);
            if (serviceNode == serverNode1) {
                nodeCount1++;
            } else if (serviceNode == serverNode2) {
                nodeCount2++;
            } else if (serviceNode == serverNode3) {
                nodeCount3++;
            }
        }
        Assert.assertEquals("节点1占比不一致", serverNode1.getWeight() / 60.0D, nodeCount1 / 1000.0D, 1E-3D);
        Assert.assertEquals("节点2占比不一致", serverNode2.getWeight() / 60.0D, nodeCount2 / 1000.0D, 1E-3D);
        Assert.assertEquals("节点3占比不一致", serverNode3.getWeight() / 60.0D, nodeCount3 / 1000.0D, 1E-3D);
    }
}

这个测试用例主要存在3个问题:

  1. 执行时间长:被测方法需要被执行1000遍;
  2. 不一定通过:由于随机数是随机,并不一定保证比例,所以导致测试用例并不一定通过;
  3. 测试目标变更:单测测试的测试目标应该是负载均衡逻辑,现在感觉测试目标变成了Random方法。

2.3. 方法2:直接mock法(不推荐)

用过PowerMockito高级功能的,知道如何去Mock构造方法。

/**
 * 随机负载均衡策略测试类
 */
@RunWith(PowerMockRunner.class)
@PrepareForTest(RandomLoadBalanceStrategy.class)
public class RandomLoadBalanceStrategyTest {
    /** 定义测试对象 */
    /** 随机负载均衡策略 */
    @InjectMocks
    private RandomLoadBalanceStrategy randomLoadBalanceStrategy;

    /**
     * 测试: 选择服务节点-第一个节点
     * 
     * @throws Exception 异常信息
     */
    @Test
    public void testSelectNodeWithFirstNode() throws Exception {
        // 模拟依赖方法
        Random random = Mockito.mock(Random.class);
        Mockito.doReturn(9).when(random).nextInt(Mockito.anyInt());
        PowerMockito.whenNew(Random.class).withNoArguments().thenReturn(random);

        // 调用测试方法
        ServerNode serverNode1 = new ServerNode(1L, 10);
        ServerNode serverNode2 = new ServerNode(2L, 20);
        ServerNode serverNode3 = new ServerNode(3L, 30);
        List<ServerNode> serverNodeList = Arrays.asList(serverNode1, serverNode2, serverNode3);
        ClientRequest clientRequest = new ClientRequest();
        ServerNode serviceNode = randomLoadBalanceStrategy.selectNode(serverNodeList, clientRequest);
        Assert.assertEquals("服务节点不一致", serverNode1, serviceNode);

        // 验证依赖方法
        int totalWeight = serverNodeList.stream().mapToInt(ServerNode::getWeight).sum();
        Mockito.verify(random).nextInt(totalWeight);
    }
}

但是,这个测试用例也存在问题:需要把RandomLoadBalanceStrategy加到@PrepareForTest注解中,导致Jacoco无法统计单元测试的覆盖率。

2.4. 方法3:工具方法法(推荐)

其实,随机数生成,还有很多工具方法,我们可以利用工具方法RandomUtils.nextInt代替构造方法。

2.4.1. 重构代码

/**
 * 随机负载均衡策略类
 */
public class RandomLoadBalanceStrategy implements LoadBalanceStrategy {
    /**
     * 选择服务节点
     * 
     * @param serverNodeList 服务节点列表
     * @param clientRequest 客户请求
     * @return 服务节点
     */
    @Override
    public ServerNode selectNode(List<ServerNode> serverNodeList, ClientRequest clientRequest) {
        // 检查节点列表
        if (CollectionUtils.isEmpty(serverNodeList)) {
            return null;
        }

        // 计算随机序号
        int totalWeight = serverNodeList.stream().mapToInt(ServerNode::getWeight).sum();
        int randomIndex = RandomUtils.nextInt(0, totalWeight);

        // 查找对应节点
        for (ServerNode serverNode : serverNodeList) {
            int currentWeight = serverNode.getWeight();
            if (currentWeight > randomIndex) {
                return serverNode;
            }
            randomIndex -= currentWeight;
        }
        return null;
    }
}

2.4.2. 测试用例

/**
 * 随机负载均衡策略测试类
 */
@RunWith(PowerMockRunner.class)
@PrepareForTest(RandomUtils.class)
public class RandomLoadBalanceStrategyTest {
    /** 定义测试对象 */
    /** 随机负载均衡策略 */
    @InjectMocks
    private RandomLoadBalanceStrategy randomLoadBalanceStrategy;

    /**
     * 测试: 选择服务节点-第一个节点
     */
    @Test
    public void testSelectNodeWithFirstNode() {
        // 模拟依赖方法
        PowerMockito.mockStatic(RandomUtils.class);
        PowerMockito.when(RandomUtils.nextInt(Mockito.eq(0), Mockito.anyInt())).thenReturn(9);

        // 调用测试方法
        ServerNode serverNode1 = new ServerNode(1L, 10);
        ServerNode serverNode2 = new ServerNode(2L, 20);
        ServerNode serverNode3 = new ServerNode(3L, 30);
        List<ServerNode> serverNodeList = Arrays.asList(serverNode1, serverNode2, serverNode3);
        ClientRequest clientRequest = new ClientRequest();
        ServerNode serviceNode = randomLoadBalanceStrategy.selectNode(serverNodeList, clientRequest);
        Assert.assertEquals("服务节点不一致", serverNode1, serviceNode);

        // 验证依赖方法
        PowerMockito.verifyStatic(RandomUtils.class);
        int totalWeight = serverNodeList.stream().mapToInt(ServerNode::getWeight).sum();
        RandomUtils.nextInt(0, totalWeight);
    }
}

2.5. 方法4:注入对象法(推荐)

如果不愿意使用工具方法,也可以注入依赖对象,我们可以利用RandomProvider(随机数提供者)来代替构造方法。

2.5.1. 重构代码

/**
 * 随机负载均衡策略类
 */
public class RandomLoadBalanceStrategy implements LoadBalanceStrategy {
    /** 注入依赖对象 */
    /** 随机数提供者 */
    @Autowired
    private RandomProvider randomProvider;

    /**
     * 选择服务节点
     * 
     * @param serverNodeList 服务节点列表
     * @param clientRequest 客户请求
     * @return 服务节点
     */
    @Override
    public ServerNode selectNode(List<ServerNode> serverNodeList, ClientRequest clientRequest) {
        // 检查节点列表
        if (CollectionUtils.isEmpty(serverNodeList)) {
            return null;
        }

        // 计算随机序号
        int totalWeight = serverNodeList.stream().mapToInt(ServerNode::getWeight).sum();
        int randomIndex = randomProvider.nextInt(totalWeight);

        // 查找对应节点
        for (ServerNode serverNode : serverNodeList) {
            int currentWeight = serverNode.getWeight();
            if (currentWeight > randomIndex) {
                return serverNode;
            }
            randomIndex -= currentWeight;
        }
        return null;
    }
}

2.5.2. 测试用例

/**
 * 随机负载均衡策略测试类
 */
@RunWith(MockitoJUnitRunner.class)
public class RandomLoadBalanceStrategyTest {
    /** 模拟依赖方法 */
    /** 随机数提供者 */
    @Mock
    private RandomProvider randomProvider;

    /** 定义测试对象 */
    /** 随机负载均衡策略 */
    @InjectMocks
    private RandomLoadBalanceStrategy randomLoadBalanceStrategy;

    /**
     * 测试: 选择服务节点-第一个节点
     */
    @Test
    public void testSelectNodeWithFirstNo
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值