前言
随着ChatGPT 以及 Stable Diffusion,Midjourney 这些新生代 AIGC 应用的兴起,围绕AIGC应用的相关开发变得越来越广泛,有呈井喷之势,从长远看这波应用的爆发不仅仅是停留在形式之上,更是在各个领域产生实际的生产力价值,比如办公领域有copilot system 365,钉钉智能; 代码编程领域有 github copilot ,cursor ide; 文娱领域的妙鸭相机;可以肯定的是未来 AIGC 的应用数量会更多,类型也会更加丰富,企业的内部软件或者SOP都会尽可能的跟AI进行融合,这必然催生出海量的AIGC应用开发需求,这也代表着巨大的市场机会。
开发 AIGC 应用的挑战
AIGC 的应用前景如此诱人,可能决定企业未来的发展走向。然而对很多中小企业及开发者而言,上手进行aigc应用的开发依然有着非常高昂的成本:
- 基础模型服务的获取:chatgpt提供了非常完善的api 开发体系,然而并不开放给国内客户使用,开源的模型进行服务的部署非常困难
- 高昂的费用, GPU 短缺导致 GPU 的费用急剧飙升,本地购买高规格显卡需要一次性花费不少的成本,并且并不能提供在线服务。
- 端到端的对接:单纯模型服务的api无法变成直接的生产力,需要完成【企业数据&企业SOP】-> LLM 服务 -> 各种端侧的完整链路
函数计算AIGC应用的解决方案
函数计算围绕创建和使用AIGC,从基础设施到应用生态,开发端到使用端提供的完整的配套
主要包含三个部分:
- 一 、模型服务底座,函数计算可以部署来自魔搭,huggingface等开元社区的ai模型,我们针对 LLM, Bert等智能知识库/助手 场景做了专门的定制,接入OpenAI兼容的api规范,提供一键部署的模版和可视化的web访问界面,帮助开发者或者企业快速上手 llama2,chatglm2,通义千问等模型的部