扩散模型加速采样算法 OLSS,大幅提升模型推理速度

研究提出了一种名为OptimalLinearSubspaceSearch(OLSS)的方法,通过学习自适应调度器,加速扩散模型的生成过程,实现在较少迭代步数下获得高质量图像。实验显示OLSS在保持图像质量的同时显著提升了生成速度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

论文:
Zhongjie Duan, Chengyu Wang, Cen Chen, Jun Huang, Weining Qian. Optimal Linear Subspace Search: Learning to Construct Fast and High-Quality Schedulers for Diffusion Models. CIKM 2023

背景

近年来,在图像生成领域,对于扩散模型的成功我们有目共睹。与基于 GAN 的生成模型不同,扩散模型需要多次调用模型进行前向推理,经过多次迭代,才能得到清晰完整的图像。扩散模型在大幅度提升生成效果的同时,也因其迭代式的生成过程面临严重的计算效率问题。我们希望改进扩散模型的生成过程,减少迭代步数,提升生成速度。

加速算法的统一分析

这其实揭示了调度机设计的本质——在由模型输出值和初始高斯噪声张成的向量空间中求解下一步的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值