概率与测度

实数的覆盖

R n \mathbb{R}^n Rn 中任意开集可表成可列个互不相交的半开闭方体的并。把半开闭方体稍微加大一点,那么 R n \mathbb{R}^n Rn 中任意开集可表成可列个开矩体的并。

R n \mathbb{R}^n Rn 任意子集,可以找到可数个开集进行覆盖。
⋃ r i ∈ Q n ∩ E B ( r i , ϵ 0 ) \bigcup_{r_i \in \mathbb{Q}^n\cap E}B(r_i, \epsilon_0) riQnEB(ri,ϵ0)

结合以上两条,可以定义 R n \mathbb{R}^n Rn 任意子集的外测度,即所有可数开矩体的覆盖中取inf。

随机过程的定义

首先给出随机过程的一个简单的定义,

定义1: ( Ω , F , μ ) \left(\Omega, \mathscr{F}, \mu\right) (Ω,F,μ),取一族可测空间 ( S t , B t ) (S_t, \mathscr{B}_t) (St,Bt),一个随机过程可以看出一族随机变量 X t   ( t ∈ T ) X_t\ (t\in T) Xt (tT),固定每个 t 0 t_0 t0 X t 0 : Ω → S t 0 X_{t_0}:\Omega \rightarrow S_{t_0} Xt0:ΩSt0 是可测函数。

用上面的定义,显然随机过程是存在的。但是由于人类不可能写出所有的这样的映射,如何构造一个随机过程形成了困难。我们想把 X ( t , ω ) X(t,\omega) X(t,ω) 看成是一个随机变量 X ( ⋅ , ω ) ∈ ∏ t ∈ T S t X(\cdot, \omega)\in \underset{t \in T}{\prod} S_{t} X(,ω)tTSt,记 S T : = ∏ t ∈ T S t S_T:=\underset{t \in T}{\prod} S_{t} ST:=tTSt

【这样想的原因是,由于随机变量把概率空间转化到可测空间 ( S t , B t )   t ∈ T (S_{t}, \mathscr{B}_t)\ t\in T (St,Bt) tT 上,那么研究清楚 ( S t , B t )   t ∈ T (S_{t}, \mathscr{B}_t)\ t\in T (St,Bt) tT 就可以知道所有随机变量能够表达的信息了。这个概率空间研究清楚后,概率空间的存在性就解决了,取 ( S T , B T , μ T ) (S_T, \mathscr{B}_T,\mu_T) (ST,BT,μT) 即可,按照原始的随机过程定义,取自然的投影映射,随机过程便存在了】

(Kolmogorov相容性定理) ( S t , B t )   t ∈ T (S_{t}, \mathscr{B}_t)\ t\in T (St,Bt) tT 是一族Borel空间族,任意有限个的乘积空间的概率测度满足相容性,那么存在 ( Ω , F , μ ) \left(\Omega, \mathscr{F}, \mu\right) (Ω,F,μ) 和随机过程 X ( t , ω ) X(t,\omega) X(t,ω)

【采用定义1,如果要找出随机过程,虽然概率空间好找,但是需要手写无限个映射,这是不可能的。Kolmogorov相容性定理告诉我们,可以从另一个角度写出随机过程,只要写出有限维分布,满足相容性定理就可以了。这样,概率空间采用 ( S T , B T , μ T ) (S_T, \mathscr{B}_T,\mu_T) (ST,BT,μT),映射就是投影到 ( S t , B t , μ t )   t ∈ T (S_{t}, \mathscr{B}_t,\mu_t)\ t\in T (St,Bt,μt) tT,采用这种方法的代价是,概率空间就非常难写,并且一定要给出 μ T \mu_T μT,因此Kolmogorov相容性定理的主要难点就是在找概率空间上。显然,概率空间找的就是 ( S T , B T ) (S_T, \mathscr{B}_T) (ST,BT),但是他的测度就带来困难了。】

乘积空间

先采用定义1,那么概率空间和无限个映射均存在,挖掘一些性质。以下先讨论乘积空间如何建立可测空间和可测映射,先不讨论测度。

先建立无穷维乘积空间,开始等价定义转换,假设定义中的 σ − \sigma- σ代数为 B T \mathscr{B}_T BT,要使得两个定义等价,需要
∀ t ∈ T , X ( t , ⋅ ) ∈ F ∣ B t ⇔ X ( ⋅ , ⋅ ) ∈ F ∣ B T \forall t \in T, X(t, \cdot)\in \mathscr{F}|\mathscr{B}_t \Leftrightarrow X(\cdot, \cdot)\in \mathscr{F}|\mathscr{B}_T tT,X(t,)FBtX(,)FBT

M = { B t 0 × ∏ t ∈ T \ { t 0 } S t : t 0 ∈ T , B t 0 ∈ B t 0 } \mathscr{M}=\{B_{t_{0}}\times \underset{t \in T\backslash\{t_{0}\}}{\prod}S_t: t_0\in T, B_{t_{0}}\in \mathscr{B}_{t_{0}} \} M={Bt0×tT\{t0}St:t0T,Bt0Bt0} B T \mathscr{B}_T BT 的构造方法是 σ ( M ) \sigma(\mathscr{M}) σ(M)

⇒ \Rightarrow :要证 X ( ⋅ , ⋅ ) ∈ F ∣ B T X(\cdot, \cdot)\in \mathscr{F}|\mathscr{B}_T X(,)FBT,只需要证 ∀ B ∈ M , X − 1 ( B ) ∈ F \forall B\in \mathscr{M},X^{-1}(B)\in \mathscr{F} BM,X1(B)F。这是显然的。

⇐ \Leftarrow :要证 ∀ t 0 , X ( t 0 , ⋅ ) ∈ F ∣ B t 0 \forall t_0,X(t_0, \cdot)\in \mathscr{F}|\mathscr{B}_{t_{0}} t0,X(t0,)FBt0,看投影映射 π T , t 0 y = y ( t 0 ) , y ∈ S T \pi_{T,t_{0}}y=y(t_0),y\in S_T πT,t0y=y(t0),yST X ( t 0 , ω ) = π T , t 0 X ( ω ) X(t_0,\omega)=\pi_{T,t_{0}}X(\omega) X(t0,ω)=πT,t0X(ω)


下面证明,任意 B ∈ B T B\in \mathscr{B}_T BBT,存在可数子集 T c T_c Tc,使得 B = B T c × ∏ t ∈ T \ { t 0 } S t B=B_{T_c}\times \underset{t \in T\backslash\{t_{0}\}}{\prod}S_t B=BTc×tT\{t0}St,其中 B T c ∈ B T c B_{T_c}\in \mathscr{B}_{T_c} BTcBTc,是可数的乘积空间。

由上述知,显然 C [ 0 , 1 ] ∉ B T C[0,1]\notin \mathscr{B}_T C[0,1]/BT

【产生这种性质的原因是定义只要求在某一点满足可测性,再有 σ \sigma σ 产生的方式导致只能做到可数个的情况】


乘积空间的测度

【2】有限维乘积空间的测度如何构造
如果有幸构造出转移概率,那么可以构造乘积空间的测度,例如马尔可夫过程,随机游走等…
如果已知乘积空间和各个空间的概率测度,那么也可以导出转移概率
【3】可列维乘积空间的测度
【4】无穷维乘积空间的测度
Tulcea定理的条件是任意有限 n n n,存在转移概率。
Kolmogorov相容性定理给出的条件是,乘积空间存在概率测度,因此可以找出转移概率,然后用Tulcea定理,存在可列维乘积空间概率测度,接着推广到整个空间上去。
由于Kolmogorov相容性的条件并不好找,转移概率也并不好找,因此随机过程说来说去也就那几种

积分定义

f f f ( Ω , F , μ ) \left(\Omega, \mathscr{F}, \mu\right) (Ω,F,μ) 上非负可测函数,则 f f f 积分的定义是

∫ Ω f ( ω ) μ ( d ω ) = s u p { ∫ Ω h ( ω ) μ ( d ω ) : 0 ≤ h ≤ f , h   s i m p l e } . \int_{\Omega} f(\omega) \mu(d\omega)=sup\left\{\int_{\Omega}h(\omega)\mu(d\omega):0\le h\le f, h \ simple \right\}. Ωf(ω)μ(dω)=sup{Ωh(ω)μ(dω):0hf,h simple}.

从定义上似乎不要求 f f f 为可测函数,但是由于任何非负可测函数都存在递增的简单函数列进行逼近。如果 f f f 不为可测函数,想象一下在某个不可测集上 f f f 长得奇奇怪怪,任何简单函数都没办法逼近那个奇怪的东西,因此就干脆要求,能定义积分的函数都是可测函数了。

积分变换定理

f f f ( Ω , F , μ ) \left(\Omega, \mathscr{F}, \mu\right) (Ω,F,μ) ( E , E ) \left(E, \mathscr{E}\right) (E,E) 的可测映射,定义 μ f : = μ ( f − 1 ( B ) ) \mu_f:=\mu(f^{-1}(B)) μf:=μ(f1(B)), 由定理【待补充】的证明知, μ f \mu_f μf E \mathscr{E} E 上的测度,称为 μ \mu μ E \mathscr{E} E 上由 f f f 导出的测度。

(积分变换定理)设 f f f ( Ω , F , μ ) \left(\Omega, \mathscr{F}, \mu\right) (Ω,F,μ) ( E , E ) \left(E, \mathscr{E}\right) (E,E) 的可测映射, g g g ( E , E ) \left(E, \mathscr{E}\right) (E,E) 上的可测函数( ( E , E ) \left(E, \mathscr{E}\right) (E,E) ( R , B R ) \left(\mathbb{R}, \mathscr{B_{\mathbb{R}}}\right) (R,BR) ),则有:
∫ f − 1 ( B ) ( g ∘ f ) ( ω ) μ ( d ω ) = ∫ B g ( x ) μ f ( d x ) , ∀ B ∈ E . \int_{f^{-1}(B)} (g\circ f)(\omega) \mu(d\omega)=\int_{B} g(x) \mu_f(dx), \forall B \in \mathscr{E}. f1(B)(gf)(ω)μ(dω)=Bg(x)μf(dx),BE.
证明:【待补充】,思路是先看简单函数,慢慢推广。

分布函数

一个简单情况是, X X X ( Ω , F , μ ) \left(\Omega, \mathscr{F}, \mu\right) (Ω,F,μ) ( R , B R ) \left(\mathbb{R}, \mathscr{B_{\mathbb{R}}}\right) (R,BR) 的随机变量,【待补充】分布函数 F X F_X FX μ \mu μ B R \mathscr{B_{\mathbb{R}}} BR 上由 X X X 导出的测度。由积分变换定理,
μ ( X ∈ B ) = ∫ X − 1 ( B ) μ ( d ω ) = ∫ B F X ( d x ) , ∀ B ∈ E . \mu(X\in B)=\int_{X^{-1}(B)} \mu(d\omega)=\int_{B} F_X(dx), \forall B \in \mathscr{E}. μ(XB)=X1(B)μ(dω)=BFX(dx),BE.
I I I 为恒等映射,则
E X = ∫ Ω I ∘ X ( ω ) μ ( d ω ) = ∫ R x F X ( d x ) , ∀ B ∈ E . EX=\int_{\Omega} I\circ X(\omega)\mu(d\omega)=\int_{\mathbb{R}} xF_X(dx), \forall B \in \mathscr{E}. EX=ΩIX(ω)μ(dω)=RxFX(dx),BE.
g g g 为可测函数,则
E [ g ( X ) ] = ∫ Ω g ∘ X ( ω ) μ ( d ω ) = ∫ R g ( x ) F X ( d x ) , ∀ B ∈ E . E[g(X)]=\int_{\Omega} g\circ X(\omega)\mu(d\omega)=\int_{\mathbb{R}} g(x)F_X(dx), \forall B \in \mathscr{E}. E[g(X)]=ΩgX(ω)μ(dω)=Rg(x)FX(dx),BE.

【从积分变换定理可以看出,随机变量的意义是把概率空间转化到实数上进行讨论。对于概率空间可测集的积分并不能直接算得。引入随机变量,而且这个随机变量通常是Borel可测的。概率空间上的测度导出对Borel可测集的测度,也就是分布,那么对随机变量的积分最后都化成了对实数上Borel可测集的积分】

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值