条件概率和正则概率(完)

条件概率

有R-N定理,条件概率 P ( A ∣ C ) \mathbf{P}(A \mid \mathcal{C}) P(AC) a.e. 唯一。
要让
E ( X ∣ C ) = ∫ X P ( d w ′ ∣ C ) \mathbf{E}(X\mid \mathcal{C})=\int X \mathbf{P}(dw^{'} \mid \mathcal{C}) E(XC)=XP(dwC)
成立,那么需要对每个 ω ∈ Ω \omega \in \Omega ωΩ ,上述关系都成立。
为了保证可积性,对 ∀ A ∈ σ ( X ) \forall A \in \sigma(X) Aσ(X) P ( A ∣ C ) \mathbf{P}(A \mid \mathcal{C}) P(AC) 是概率测度。
但是, P ( A ∣ C ) \mathbf{P}(A \mid \mathcal{C}) P(AC) a.e. 唯一的,因此不意味着对每个 ω ∈ Ω \omega \in \Omega ωΩ 都是概率测度。因此,对于 ∀ A ∈ σ ( X ) \forall A \in \sigma(X) Aσ(X) ,都存在 N A N_A NA 是一个关于 A A A 的零测集,使得在 N A N_A NA P ( A ∣ C ) \mathbf{P}(A \mid \mathcal{C}) P(AC) 可能不是概率测度。取遍 σ ( X ) \sigma(X) σ(X) 上所有的集合,这些不满足的零测集合起来不一定还是零测集,因此要使得上述积分成立不是显然的。

正则条件概率

7.5 .1 定义 \quad F 1 , C \mathcal{F}_{1}, \mathcal{C} F1,C F \mathcal{F} F 下的子 σ \sigma σ 域, Ω × F 1 \Omega \times \mathcal{F}_{1} Ω×F1 上函数 P C ( ω , A ) , \mathbf{P}^{\mathcal{C}}(\omega, A), PC(ω,A), 若满足:
(1) ∀ ω ∈ Ω , P C ( ω , ⋅ ) \forall \omega \in \Omega, \mathbf{P}^{\mathcal{C}}(\omega, \cdot) ωΩ,PC(ω,) F 1 \mathcal{F}_{1} F1 上概率测度;
(2) ∀ A ∈ F 1 , P c ( ⋅ , A ) \forall A \in \mathcal{F}_{1}, \mathbf{P}^{c}(\cdot, A) AF1,Pc(,A) C \mathcal{C} C 上可测函数。
对于任意 A A A,存在 C \mathcal{C} C 上零测集 N N N,使得 P C ( ω , A ) = P ( A ∣ C ) ( ω ) , ω ∈ N c , \mathbf{P}^{\mathcal{C}}(\omega, A)=\mathbf{P}(A \mid \mathcal{C})(\omega), \omega \in N^{c}, PC(ω,A)=P(AC)(ω),ωNc, 则称 p c ( ω , A ) , ( ω , A ) ∈ Ω × F 1 \mathbf{p}^{c}(\omega, A),(\omega, A) \in \Omega \times \mathcal{F}_{1} pc(ω,A),(ω,A)Ω×F1 F 1 \mathcal{F}_{1} F1 C \mathcal{C} C之下的正则条件概率.

正则条件概率非常简单粗暴,他就是直接满足上述积分式子的东西,而且约等于条件概率。但是,需要验证是否存在。

P C ( ω , A ) , ( ω , A ) ∈ Ω × F 1 \mathrm{P}^{\mathcal{C}}(\omega, A),(\omega, A) \in \Omega \times \mathcal{F}_{1} PC(ω,A),(ω,A)Ω×F1 F 1 \mathcal{F}_{1} F1 C \mathcal{C} C 之下的正则条件概率, X X X F 1 \mathcal{F}_{1} F1 可测函数, 则对任何一个取定的条件期望 E ( X ∣ C ) , \mathbf{E}(X \mid \mathcal{C}), E(XC), 存在一个 P c \mathbf{P}_{c} Pc 零概率集 N N N 使得
E ( X ∣ C ) ( ω ) = ∫ Ω X ( ω ′ ) P C ( ω , d ω ′ ) , ω ∈ N c \mathbf{E}(X \mid \mathcal{C})(\omega)=\int_{\Omega} X\left(\omega^{\prime}\right) \mathbf{P}^{\mathcal{C}}\left(\omega, \mathrm{d} \omega^{\prime}\right), \quad \omega \in N^{\mathrm{c}} E(XC)(ω)=ΩX(ω)PC(ω,dω),ωNc

正则条件概率存在性

( E , B ) (E, \mathscr{B}) (E,B) 为完备可分距离空间, P \mathbf{P} P 为其上测度,那么对任何子 σ \sigma σ C ⊂ B \mathcal{C} \subset \mathscr{B} CB B \mathscr{B} B C \mathcal{C} C 之下的正则条件概率总存在。

我们不证明这个定理,但是看下证明中怎么取的正则条件概率。
取的正则条件概率为:

任取定 ω 0 ∈ N c , \omega_{0} \in N^{c}, ω0Nc,
U ( ω , A ) = { R 1 ( ω , A ) , ω ∈ N c , A ∈ B R 1 ( ω 0 , A ) , ω ∈ N , A ∈ B U(\omega, A)=\left\{\begin{array}{ll} R_{1}(\omega, A), & \omega \in N^{c}, A \in \mathscr{B} \\ R_{1}\left(\omega_{0}, A\right), & \omega \in N, A \in \mathscr{B} \end{array}\right. U(ω,A)={R1(ω,A),R1(ω0,A),ωNc,ABωN,AB

R 1 ( ω , ⋅ ) R_{1}(\omega, \cdot) R1(ω,) 的取法是,由 R ( ω , ⋅ ) R( \omega, \cdot ) R(ω,) 扩张成的有限测度。

从中我们看出,正则条件概率取得值就是条件概率中“正常”的那些值,不正常的值用正常的值代替。

转移概率

6.1.15 定义 \quad ( Ω i , F i ) , i = 1 , 2 \left(\Omega_{i}, \mathcal{F}_{i}\right), i=1,2 (Ωi,Fi),i=1,2 是可测空间, 映射 λ : Ω 1 × F 2 → [ 0 , ∞ ] \lambda: \Omega_{1} \times \mathcal{F}_{2} \rightarrow[0, \infty] λ:Ω1×F2[0,]
如果满足下列条件,则称它为 ( Ω 1 , F 1 ) \left(\Omega_{1}, \mathcal{F}_{1}\right) (Ω1,F1) ( Ω 2 , F 2 ) \left(\Omega_{2}, \mathcal{F}_{2}\right) (Ω2,F2) 上的转移测度, 简称为 Ω 1 × \Omega_{1} \times Ω1×
F 2 \mathcal{F}_{2} F2 上的转移测度.
(i) ∀ B ∈ F 2 , λ ( ⋅ , B ) \forall B \in \mathcal{F}_{2}, \lambda(\cdot, B) BF2,λ(,B) F 1 \mathcal{F}_{1} F1 可测函数 ; ; ;
(ii) ∀ ω ∈ Ω 1 , λ ( ω , ⋅ ) \forall \omega \in \Omega_{1}, \lambda(\omega, \cdot) ωΩ1,λ(ω,) F 2 \mathcal{F}_{2} F2 上的测度.
∃ B k n ∈ F k , n ∈ N \exists B_{k n} \in \mathcal{F}_{k}, n \in \mathrm{N} BknFk,nN 两两不交, Ω k = ⋃ n = 1 ∞ B k n , k = 1 , 2 , \Omega_{k}=\bigcup_{n=1}^{\infty} B_{k n}, k=1,2, Ωk=n=1Bkn,k=1,2, 使得
sup ⁡ ω ∈ B 1 m λ ( ω , B 2 n ) < ∞ , ∀ m , n ∈ N \sup _{\omega \in B_{1 m}} \lambda\left(\omega, B_{2 n}\right)<\infty, \forall m, n \in \mathrm{N} ωB1msupλ(ω,B2n)<,m,nN
则称 λ \lambda λ σ \sigma σ 有限转移测度.
如果 ∀ ω ∈ Ω 1 , λ ( ω , Ω 2 ) = 1 , \forall \omega \in \Omega_{1}, \lambda\left(\omega, \Omega_{2}\right)=1, ωΩ1,λ(ω,Ω2)=1, 则称 λ \lambda λ Ω 1 × F 2 \Omega_{1} \times \mathcal{F}_{2} Ω1×F2 上的转移概率,显然转移概率是 σ \sigma σ 有限转移测度.

7.5.13 定理

( E k , B k ) , k = 1 , 2 , 3 , ⋯   , n \left(E_{k}, \mathscr{B}_{k}\right), k=1,2,3, \cdots, n (Ek,Bk),k=1,2,3,,n 是完备可分距离可测空间,
( E k , B k ) \left(E^{k}, \mathscr{B}^{k}\right) (Ek,Bk) 是前 k k k 个可测空间的乘积可测空间,有测度 P \mathbf{P} P。则存在 ( E 1 , B 1 ) \left(E_{1}, \mathscr{B}_{1}\right) (E1,B1) 上概率测度 P 1 P_{1} P1 E k − 1 × B k E^{k-1} \times \mathscr{B}_{k} Ek1×Bk 上转移概率 P k ( x 1 , x 2 , ⋯   , P_{k}\left(x_{1}, x_{2}, \cdots,\right. Pk(x1,x2,, x k − 1 , A ) , ( x 1 , x 2 , ⋯   , x k − 1 ) ∈ E k − 1 , A ∈ B k , k = 2 , 3 , ⋯   , n , \left.x_{k-1}, A\right),\left(x_{1}, x_{2}, \cdots, x_{k-1}\right) \in E^{k-1}, A \in \mathscr{B}_{k}, k=2,3, \cdots, n, xk1,A),(x1,x2,,xk1)Ek1,ABk,k=2,3,,n, 使 B ∈ B n , B \in \mathscr{B}^{n}, BBn,
P ( B ) = ∫ E ∫ E ⋯ ∫ E I B ( x 1 , x 2 , ⋯   , x n ) P n ( x 1 , x 2 , ⋯   , x n − 1 , d x n ) ⋯ P 2 ( x 1 , d x 2 ) P 1 ( d x 1 ) \begin{array}{c} \mathbf{P}(B)=\int_{E} \int_{E} \cdots \int_{E} I_{B}\left(x_{1}, x_{2}, \cdots, x_{n}\right) \\ P_{n}\left(x_{1}, x_{2}, \cdots, x_{n-1}, d x_{n}\right) \cdots P_{2}\left(x_{1}, d x_{2}\right) P_{1}\left(d x_{1}\right) \end{array} P(B)=EEEIB(x1,x2,,xn)Pn(x1,x2,,xn1,dxn)P2(x1,dx2)P1(dx1)

证明:取
C n − 1 : = { B n − 1 × E n : B n − 1 ∈ B n − 1 } \mathcal{C}_{n-1}:=\left\{B^{n-1} \times E_{n}: B^{n-1} \in \mathscr{B}^{n-1} \right\} Cn1:={Bn1×En:Bn1Bn1}
则一定存在在 C n − 1 \mathcal{C}_{n-1} Cn1 之下的条件概率
P C n − 1 ( x , A ) , ( x , A ) ∈ E n × B n \mathbf{P}^{\mathcal{C}_{n-1}}(x, A), \quad(x, A) \in E^{n} \times \mathscr{B}^{n} PCn1(x,A),(x,A)En×Bn
由于对任意 ( x 1 , x 2 , ⋯   , x n − 1 ) , ( x 1 , x 2 , ⋯   , x n − 1 ) × E n \left(x_{1}, x_{2}, \cdots, x_{n-1}\right),\left(x_{1}, x_{2}, \cdots, x_{n-1}\right) \times E_{n} (x1,x2,,xn1),(x1,x2,,xn1)×En C n − 1 \mathcal{C}_{n-1} Cn1 的原子, 故
∀ A ∈ B n , P ( A ∣ C n − 1 ) = μ ( A ; x 1 , x 2 , ⋯   , x n − 1 ) , ∀ ( x 1 , x 2 , ⋯   , x n ) ∈ ( x 1 , x 2 , ⋯   , x n − 1 ) × E n \forall A \in \mathscr{B}^{n},\quad \mathbf{P}(A \mid \mathcal{C}_{n-1})=\mu(A; x_{1}, x_{2}, \cdots, x_{n-1}), \quad \forall \left(x_{1}, x_{2}, \cdots, x_{n}\right) \in \left(x_{1}, x_{2}, \cdots, x_{n-1}\right)\times E_{n} ABn,P(ACn1)=μ(A;x1,x2,,xn1),(x1,x2,,xn)(x1,x2,,xn1)×En

μ ( A ; x 1 , x 2 , ⋯   , x n − 1 ) \mu(A; x_{1}, x_{2}, \cdots, x_{n-1}) μ(A;x1,x2,,xn1) 是和 A , ( x 1 , x 2 , ⋯   , x n − 1 ) A, \left(x_{1}, x_{2}, \cdots, x_{n-1}\right) A,(x1,x2,,xn1) 有关的常数。

所以:
P n ( x 1 , x 2 , ⋯   , x n − 1 , B n ) : = P C n − 1 ( x 1 , x 2 , ⋯   , x n , E n − 1 × B n ) P_{n}\left(x_{1}, x_{2}, \cdots, x_{n-1}, B_{n}\right):=\mathbf{P}^{\mathcal{C}_{n-1}}\left(x_{1}, x_{2}, \cdots, x_{n}, E^{n-1} \times B_{n}\right) Pn(x1,x2,,xn1,Bn):=PCn1(x1,x2,,xn,En1×Bn)
定义了 E n − 1 × B n E^{n-1} \times \mathscr{B}_{n} En1×Bn 上的函数, 而且由正则条件概率的定义易知它是 ( E n − 1 , B n − 1 ) \left(E^{n-1}, \mathscr{B}^{n-1} \right) (En1,Bn1) ( E n , B n ) \left(E_{n}, \mathscr{B}_{n} \right) (En,Bn) 上的转移概率。

注意: ( E n − 1 , B n − 1 ) \left(E^{n-1}, \mathscr{B}^{n-1} \right) (En1,Bn1) ( E n , B n ) \left(E_{n}, \mathscr{B}_{n} \right) (En,Bn) 上的转移概率是由正则条件概率保证的,前面论述的原子、条件概率等是为了保证这样的定义是函数。如果条件概率不是常数,那么不一定就是函数。如果条件概率是常数,那么正则条件概率在零测集上任取,可以取成常数,其他集合上需要和条件概率一致,因此需要条件概率是常数的条件。

Tulcea定理

Tulcea定理的条件是任意有限 n n n,存在转移概率。上述定理回答了这一点。

Kolmogorov相容性定理

Kolmogorov相容性定理需要先用Tulcea找出可列维上的测度。

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值