数学分析、实变函数与泛函分析

数学分析、实变函数与泛函分析

实数

泛函的观点:自然数到有理数,有理数到柯西列(元素为有理数),实数就是所有柯西列收敛的极限点的集合

实数的性质

1、若 x < y x<y x<y,则 ∃ r ∈ Q \exist r\in \mathbb{Q} rQ,使得 x < r < y x<r<y x<r<y

2、若 ∀ ϵ > 0 , a < b + ϵ \forall \epsilon >0, a<b+\epsilon ϵ>0,a<b+ϵ,则 a ≤ b a\le b ab。(反证法)

有界集

定义: S ⊂ R S\subset \mathbb{R} SR,对一切 x ∈ S x \in S xS,均有 x ≤ M x\le M xM,则称 M M M S S S 的一个上界。同理下界定义

上确界定义:一个实数集合 S S S,若有一个实数 η \eta η
(1) S S S中任何数都不超过 η \eta η
(2) ∀ α < η , ∃ x 0 ∈ S , s . t .   x 0 > α \forall \alpha<\eta, \exist x_0\in S, s.t. \ x_0>\alpha α<η,x0S,s.t. x0>α

类似下确界

性质

1、上确界、下确界唯一

2、下确界一定小于等于上确界

3、上确界、下确界可能不属于 S S S

s u p { S } ∈ S    ⟺    s u p { S } = m a x { S } sup\{S\} \in S \iff sup\{S\}=max\{S\} sup{S}Ssup{S}=max{S}

确界原理

S S S若有上界,则必有上确界。

S S S若有下界,则必有下确界。

上界必然大于等于上确界。

下界必然小于等于下确界。

推广版:非空数集必有上下确界(含 ∞ \infty

数列的极限

{ a n } \{a_n\} {an}为数列, a a a为一个实数,若
∀ ϵ > 0 , ∃ N   s . t .   ∀ n > N , ∣ a n − a ∣ < ϵ \forall \epsilon>0, \exist N \ s.t. \ \forall n>N, |a_n-a|<\epsilon ϵ>0,N s.t. n>N,ana<ϵ,则称 l i m n → ∞ a n = a lim_{n\rightarrow\infty}a_n=a limnan=a

注: N N N ϵ \epsilon ϵ 有关。

性质

1、唯一性:若数列收敛,则极限唯一。(反证法,a<b就会有两个邻域)

2、有界性:若数列收敛,则有界。(后面无穷项小于某数,且前面有限项找最大值)

3、保号性:若 l i m n → ∞ a n = a > 0 lim_{n\rightarrow\infty}a_n=a>0 limnan=a>0,则对任何 x < a x<a x<a,存在 N N N使得 n > N n>N n>N时, a n > x a_n>x an>x

4、保不等式 { a n } , { b n } \{a_n\}, \{b_n\} {an},{bn}均收敛,若存在 N N N使得 n > N n>N n>N时, a n ≤ b n a_n\le b_n anbn a n < b n a_n<b_n an<bn,则 l i m n → ∞ a n ≤ l i m n → ∞ b n lim_{n\rightarrow\infty}a_n\le lim_{n\rightarrow\infty}b_n limnanlimnbn

5、夹逼定理

6、四则运算(均收敛才能使用)

7、收敛等价于任何子列收敛

8、单调有界必有极限

9、若 s u p { S } ∉ S sup\{S\} \notin S sup{S}/S,则存在严格的递增子列使得其极限为 s u p { S } sup\{S\} sup{S}

10、任何数列有单调子列

11、任何有界数列有收敛子列

12、柯西收敛准则。

函数的极限

前提: f f f x 0 x_0 x0的某个空心邻域 U ˚ ( x 0 ) \mathring{U}(x_0) U˚(x0)有定义。

存在常数 A A A,使得对任意 ϵ > 0 \epsilon>0 ϵ>0,存在 δ > 0 , U ˚ ( x 0 , δ ) ⊂ U ˚ ( x 0 ) \delta>0, \mathring{U}(x_0,\delta)\subset\mathring{U}(x_0) δ>0,U˚(x0,δ)U˚(x0),在 U ˚ ( x 0 , δ ) \mathring{U}(x_0,\delta) U˚(x0,δ)中有 ∣ f ( x ) − A ∣ < ϵ |f(x)-A|<\epsilon f(x)A<ϵ。则称 l i m x → x 0 f ( x ) = A lim_{x\rightarrow x_0}f(x)=A limxx0f(x)=A

性质

1、唯一性 l i m x → x 0 f ( x ) lim_{x\rightarrow x_0}f(x) limxx0f(x)若存在,则唯一。

2、保不等式 l i m x → x 0 f ( x ) lim_{x\rightarrow x_0}f(x) limxx0f(x) l i m x → x 0 g ( x ) lim_{x\rightarrow x_0}g(x) limxx0g(x)均存在且存在一个邻域,在这个邻域中, f ( x ) ≤ g ( x ) f(x)\le g(x) f(x)g(x),则 l i m x → x 0 f ( x ) ≤ l i m x → x 0 g ( x ) lim_{x\rightarrow x_0}f(x)\le lim_{x\rightarrow x_0}g(x) limxx0f(x)limxx0g(x)

函数列

点点收敛

对于 D D D上每一个点 x x x,函数列 { f n ( x ) } \{f_n(x)\} {fn(x)}均收敛到一个值,因此极限值也形成了函数,记作
l i m n → ∞ f n ( x ) = f ( x ) , x ∈ D lim_{n\rightarrow\infty}f_n(x)=f(x), x\in D limnfn(x)=f(x),xD

固定 x x x ∀ ϵ > 0 , ∃ N ( x , ϵ )   s . t .   ∀ n > N , ∣ f n ( x ) − f ( x ) ∣ < ϵ \forall \epsilon>0, \exist N(x, \epsilon) \ s.t. \ \forall n>N, |f_n(x)-f(x)|<\epsilon ϵ>0,N(x,ϵ) s.t. n>N,fn(x)f(x)<ϵ

例如: f n ( x ) = x n f_n(x)=x^n fn(x)=xn,在 ( − 1 , 1 ] (-1,1] (1,1]点点收敛到

f ( x ) = 0 , ∣ x ∣ < 1 ; 1 , x = 1 f(x) =0, |x|<1;1,x=1 f(x)=0,x<1;1,x=1

注意:点点收敛,跟据点的不同,收敛速度不同。比如 f n ( x ) = x n f_n(x)=x^n fn(x)=xn x x x越接近 1 1 1,越“难”收敛。事实上,如果令 x n = 1 − 1 n x_n=1-\frac{1}{n} xn=1n1,则 f n ( x n ) = ( 1 − 1 / n ) n f_n(x_n)=(1-1/n)^{n} fn(xn)=(11/n)n的极限为 1 e \frac{1}{e} e1

一致收敛

∀ ϵ > 0 , ∃ N ( ϵ )   s . t .   ∀ n > N , ∀ x ∈ D , ∣ f n ( x ) − f ( x ) ∣ < ϵ \forall \epsilon>0, \exist N( \epsilon) \ s.t. \ \forall n>N, \forall x\in D, |f_n(x)-f(x)|<\epsilon ϵ>0,N(ϵ) s.t. n>N,xD,fn(x)f(x)<ϵ

一致收敛和点点收敛的联系

叶果洛夫(Egoroff)定理:设 E E E R n \mathbb{R}^n Rn 中的可测集,且 m E < ∞ mE<\infty mE< f n ( x ) {f_n(x)} fn(x) E E E 上几乎处处有限的可测函数序列, f ( x ) f(x) f(x) E E E 上几乎处处有限的可测函数,则下列各命题等价。

(1) f n ( x ) f_n(x) fn(x)几乎处处收敛到 f ( x ) f(x) f(x)

(2)对任意正数 δ \delta δ,存在 E E E 的可测子集 E δ E_\delta Eδ,使得 m ( E − E δ ) < δ m(E-E_\delta)<\delta m(EEδ)<δ,而在 E δ E_\delta Eδ 上, f n ( x ) f_n(x) fn(x)一致收敛到 f ( x ) f(x) f(x)

Note:点点收敛的函数只要刨掉一些( N N N控制不住的点),剩下的都能一致收敛(取 N N N比较大就控制住了)。

E δ E_\delta Eδ 上由于函数列是一致收敛的,所以很多问题很容易得到解决,然而在 E − E δ E-E_\delta EEδ 上怎么办呢?后面我们将看到, E − E δ E-E_\delta EEδ 上的性质决定了积分和极限号能否互换。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值