数据预处理之独热编码(OneHotEncoder)

什么是独热编码(One-Hot)?
One-Hot编码,又称为一位有效编码,主要是采用N位状态寄存器来对N个状态进行编码,每个状态都由他独立的寄存器位,并且在任意时候只有一位有效。
One-Hot编码是分类变量作为二进制向量的表示。这首先要求将分类值映射到整数值。然后,每个整数值被表示为二进制向量,除了整数的索引之外,它都是零值,它被标记为1。
很多机器学习任务中,特征并不总是连续值,有可能是分类值。

考虑以下三个特征:

["male", "female"]
 
["from Europe", "from US", "from Asia"]
 
["uses Firefox", "uses Chrome", "uses Safari", "uses Internet Explorer"]

如果将上述特征用数字表示,效率会高很多,例如:

["male", "from US", "uses Internet Explorer"] 表示为[0, 1, 3]
 
["female", "from Asia", "uses Chrome"]表示为[1, 2, 1]

但是,转化为数字表示后,上述数据不能直接用在我们得分类器中。因为,分类器往往默认数据时连续的,并且是有序的。但按上述表示的数字并不是有序的,而且是随机分配的。解决上述问题的一种方法是采用One-Hot Encoding。
One-Hot Encoding ,其方法是使用N位状态寄存器来对N个状态进行编码,每个状态都有它独立的寄存器位,并且在任意时候,其中只有一位有效。

例如

自然状态码为:000,001,010,011,100,101
 
独热编码为:000001,000010,000100,001000,010000,100000
 

对于每一个特征,如果它有m个可能值,那么经过One-Hot
Encoding后,就变成了m个二元特征。并且,这些特征互斥,每次只有一个激活。因此,数据就会变成稀疏的。
这样的好处:
解决了分类器不好处理属性数据的问题
在一定程度上起到了扩充特征的作用
独热编码的缺点
当类别的数量很多时,特征空间会变得非常大。在这种情况下,一般可以用PCA来减少维度。而且one hot encoding+PCA这种组合在实际中也非常有用。

encoder = preprocessing.OneHotEncoder()
encoder.fit([
    [0, 2, 1, 12],
    [1, 3, 5, 3],
    [2, 3, 2, 12],
    [1, 2, 4, 3]
])
encoded_vector = encoder.transform([[2, 3, 5, 3]]).toarray()
print("\n Encoded vector =", encoded_vector)
 
#输出结果
Encoded vector = [[ 0. 0. 1. 0. 1. 0. 0. 0. 1. 1. 0.]]
 
 
#结果分析:
4个特征:
第一个特征(即为第一列)为[0,1,2,1] ,其中三类特征值[0,1,2]
因此One-Hot Code可将[0,1,2]表示为:[100,010,001]
同理第二个特征列可将两类特征值[2,3]表示为[10,01]
第三个特征将4类特征值[1,2,4,5]表示为[1000,0100,0010,0001]
第四个特征将2类特征值[3,12]表示为[10,01]
 
因此最后可将[2,3,5,3]表示为[0,0,1,0,1,0,0,0,1,1,0]
 

一、为什么要独热编码?
1,独热编码(是因为大部分算法是基于向量空间中的度量来进行计算的,为了使非偏序关系的变量取值不具有偏序性,并且到原点是等距的。将离散型特征使用one-hot编码,确实会让特征之间的距离计算更加合理。比如,有一个离散型特征,代表工作类型,该离散型特征,共有三个取值,不使用one-hot编码,其表示分别是x_1 = (1), x_2 = (2), x_3 = (3)。两个工作之间的距离是,(x_1, x_2) = 1, d(x_2, x_3) = 1, d(x_1, x_3) = 2。那么x_1和x_3工作之间就越不相似吗?显然这样的表示,计算出来的特征的距离是不合理。那如果使用one-hot编码,则得到x_1 = (1, 0, 0), x_2 = (0, 1, 0), x_3 = (0, 0, 1),那么两个工作之间的距离就都是sqrt(2).即每两个工作之间的距离是一样的,显得更合理。
使用one-hot编码,将离散特征的取值扩展到了欧式空间,离散特征的某个取值就对应欧式空间的某个点。将离散型特征使用one-hot编码,会让特征之间的距离计算更加合理。离散特征进行one-hot编码后,编码后的特征,其实每一维度的特征都可以看做是连续的特征。就可以跟对连续型特征的归一化方法一样,对每一维特征进行归一化。比如归一化到[-1,1]或归一化到均值为0,方差为1。
2,为什么特征向量要映射到欧式空间?
将离散特征通过one-hot编码映射到欧式空间,是因为,在回归,分类,聚类等机器学习算法中,特征之间距离的计算或相似度的计算是非常重要的,而我们常用的距离或相似度的计算都是在欧式空间的相似度计算,计算余弦相似性,基于的就是欧式空间。

部分转载于https://blog.csdn.net/m0_38052384/article/details/102738001

  • 2
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值