Histograms of Oriented Gradients for Human Detection

本文探讨了在行人检测中,不同类型的梯度计算方法的影响。实验表明,经过高斯平滑后采用一维[-1, 0, 1]模板计算的梯度效果最佳。使用更大模板或更多平滑可能导致性能下降,例如,σ从0增加到2时,召回率从89%降低到80%。此外,其他模板如立方校正模板和对角模板的性能稍逊于简单模板。" 135281113,7337247,深度学习与计算机视觉:从CNN到Transformer的演进,"['深度学习', '计算机视觉', '卷积神经网络', 'Transformer', '自然语言处理']
摘要由CSDN通过智能技术生成

Histograms of Oriented Gradients for Human Detection 

论文浅析
标签: 车辆

行人检测

 
分类:图像处理
1.介绍
HOG(Histogram of Oriented Gradients)是由法国国家计算机科学及自动控制研究所的Dalal等人于2005年在CVPR会议上,提出的一种解决人体目标检测的图像描述子,该方法使用梯度方向直方图(Histogram of Oriented Gradients,简称HOG)特征来表达人体,提取人体的外形信息和运动信息,形成丰富的特征集。
HOG的思想是:局部物体的外表和形状可以被局部梯度或边缘方向的分布很好地描述,即使没有获得对应梯度或边缘的精确位置。具体实现方法:将图像窗口分割成小的空间区域(细胞cell),通过计算一个细胞单元中所有像素的梯度或边缘信息,得到每一个细胞单元的局部一维边缘方向或梯度方向的直方图。为保持对光照强度或阴影的检测效果不变性,需要对直方图进行对比度归一化,可以通过将细胞单元组成更大的块(Block,并归一化块内的所有细胞单元来实现。我们将归一化的块描述成为HOG描述子。将检测窗口中的所有块的HOG描述子组合起来就形成了特征向量,然后使用SVM分类器进行分类进而进行实现车辆或是行人检测。

2.生成过程



1)图像归一化
归一化图像的主要目的是提高检测器对光照的鲁棒性,因为实际检测的人体目标可能出现在的各种不同的场合,因而就需要检测器必须对光照不敏感才会有较好的检测效果,如图像经过伽马变换或者是颜色归一化。通过使用幂次定律(伽马)评价几种彩色空间:灰度空间、RGB空间和LAB空间。Dalal等人表明这些标准化对结果影响很小,可能是随后的描述子归一化起到了相同的作用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值