Histograms of Oriented Gradients for Human Detection
论文浅析
标签: 车辆 行人检测 |
分类:图像处理 |
1.介绍
HOG(Histogram of Oriented Gradients)是由法国国家计算机科学及自动控制研究所的Dalal等人于2005年在CVPR会议上,提出的一种解决人体目标检测的图像描述子,该方法使用梯度方向直方图(Histogram of Oriented Gradients,简称HOG)特征来表达人体,提取人体的外形信息和运动信息,形成丰富的特征集。
HOG的思想是:局部物体的外表和形状可以被局部梯度或边缘方向的分布很好地描述,即使没有获得对应梯度或边缘的精确位置。具体实现方法:将图像窗口分割成小的空间区域(细胞,cell),通过计算一个细胞单元中所有像素的梯度或边缘信息,得到每一个细胞单元的局部一维边缘方向或梯度方向的直方图。为保持对光照强度或阴影的检测效果不变性,需要对直方图进行对比度归一化,可以通过将细胞单元组成更大的块(Block),并归一化块内的所有细胞单元来实现。我们将归一化的块描述成为HOG描述子。将检测窗口中的所有块的HOG描述子组合起来就形成了特征向量,然后使用SVM分类器进行分类进而进行实现车辆或是行人检测。
2.生成过程
1)图像归一化
归一化图像的主要目的是提高检测器对光照的鲁棒性,因为实际检测的人体目标可能出现在的各种不同的场合,因而就需要检测器必须对光照不敏感才会有较好的检测效果,如图像经过伽马变换或者是颜色归一化。通过使用幂次定律(伽马)评价几种彩色空间:灰度空间、RGB空间和LAB空间。Dalal等人表明这些标准化对结果影响很小,可能是随后的描述子归一化起到了相同的作用。