从头开始训练一个检测QR二维码区域的YOLOv3模型

本文详细介绍了如何从头开始训练一个YOLOv3模型,专门用于检测QR二维码。首先,讲述了在Windows环境下编译Darknet的过程,接着是数据准备,包括收集和标注QR图片。然后,描述了训练过程,并对训练出的模型进行了性能测试,比较了YOLOv3和YOLOv3-tiny在检测QR二维码时的效率。最后,提供了训练好的模型权重文件供下载。
摘要由CSDN通过智能技术生成

条形码和二维码在识别的时候主要包含定位和解码两个步骤。寻找码的位置,除了用传统的图像算法之外,也可以借助深度学习。那么深度学习的效率如何,我做了一个实验。

为QR二维码训练YOLOv3模型

编译Darknet

下载Darknet

git clone https://github.com/AlexeyAB/darknet --depth 1

我的环境是Windows,所以需要安装以下工具:

环境搭建的时候,CUDA是最坑的。虽然在命令行中发现nvcc可以工作,但

评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值