java 链表基础详解

本文详细分析了链表数据结构,解释了链表为何适合插入操作,而不适合查询。通过代码展示了链表的头部插入、指定位置插入、链表尾部插入、指定位置删除和删除指定元素的方法,并实现了一个基于链表的LRU算法。
摘要由CSDN通过智能技术生成
拨开链表迷雾

链表是基础的数据结构之一,和数组一样基础,提到链表我们总会联想到数组结构,最顺嘴的一句话便是数组适合查询,链表适合插入,但是这句话其实说的太过于简单,以至于就不是那么准确了,我们来细细分析下这句话。

数组适合查询?

数组适合查询这句话其实准确说应该是数组基于下标查询效率较高,时间复杂度是O(1),如果用其值去数组中查询,效率也是不高的,时间复杂度和链表一样,是O(n),所以我们在使用数组结构时,要学会利用其下标。

数组不适合写入?

数组不适合写入的原因有两个,第一是数组的内存分配,第二是数组的动态扩容需要对数据进行复制和移动。数组一但初始化内存大小就确定,可以联想数组的length,数据动态扩容需要对数组重新分配内存,将数据重新复制到新的内存里,所以数组的动态扩容是不适合写的根本原因。
在这里插入图片描述
链表适合写入?

链表适合写入最大的原因是链表并不需要连续的内存,而且链表的插入也不需要数据复制来复制去,链表中节点的连接是通过指针实现的。

在这里插入图片描述
所以单链表的插入只要找到要插入节点的前一个节点,只需要如下操作即可:
在这里插入图片描述

  1. node3.next -> node2
  2. node1.next -> node3

所以这么看来链表数据的插入根本不需要数据的复制,所以这才是链表适合插入的根本原因。

链表不适合查询?

这一点是毫无疑问的,因为链表没有像数组的索引的一个东西,所以无论是通过索引还是值在链表中查询都需要去遍历链表,时间复杂度是O(n)。

综上所有,数组适合查询,链表适合插入已经分析清楚了,数组和链表优点的优越性脱离条件没有任何意义。

遇见链表

上面已经分析了链表的优点和缺点,接下来我们来通过代码来遇见链表吧。

首先我来看一个最简单的单链表

public class Linked<T> {

    private class  Node<T> {

        public T t;

        public Node next;

        public Node(T t) {
            this(t,null);
        }

        public Node(T t,Node next) {
            this.t = t;
            this.next = next;
        }
    }

    private Node head;

    private int size;

    public Linked() {
        this.head = null;
        this.size = 0;
    }
}

这个链表暂时没有任何方法,只是内部有一个节点的内部类,然后两个成员变量,一个head,一个size。而内部类node也很简单,一个泛型代表节点内容,一个自身引用作为next,对于这个node类可以这样理解
在这里插入图片描述

前面我们也分析了链表是适合写的一个数据结构,那么接下来我们通过代码来看下链表的写入和删除。对于链表的插入和删除我一共设计了如下几个方法:

  • addFirst 链表头部插入
  • addLast 链表尾部插入
  • add 指定位置插入
  • delect 指定位置删除
  • remove 删除指定元素
链表头部插入
/**
     * 链表头部添加元素
     * @param t
     */
    public void addFirst(T t){
        Node<T> node = new Node<T>(t);
        // 将新节点的next指向原来的头节点  newNode.next -> head
        node.next = this.head;
        // 将新节点赋值给头节点 newNode -> oldHead ->
        this.head = node;
        this.size ++;
    }

其实写链表的代码一个关键点是注意指针不要丢失,我在写链表时一般遵循一下两个步骤:

  • 创建一个节点
  • 将当前节点的next指向head
  • 将当前节点赋值给head

在这里插入图片描述

指定位置插入
 /**
     * 指定位置插入
     * @param t
     * @param index
     */
    public void add(T t,int index){
        if (index < 0 || index > size){
            throw new IllegalArgumentException("index error");
        }

        if (index == 0){
            this.addFirst(t);
            return;
        }
        Node preNode = this.head;
        // 找到要插入的前一个节点
        for (int i = 0; i < index - 1; i++) {
            preNode = preNode.next;
        }

        //将链表链上
        Node node = new Node(t);
        // node - > next
        node.next = preNode.next;
        // pre - > node - > next
        preNode.next = node;
        this.size ++;
    }

指定位置插入按照如下步骤:

  1. 找到指定位置的前一个节点
  2. 将当前节点指向前一个节点的下一个节点
  3. 将前一个节点指向当前节点

在这里插入图片描述

链表尾部插入
/**
     * 链表尾部添加元素
     * @param t
     */
    public void addLast(T t){
        this.add(t,this.size);
    }
指定位置删除
/**
     * 指定位置删除
     * @param index
     * @return
     */
    public Object delect(int index){

        if (index < 0 || index > size){
            throw new IllegalArgumentException("index error");
        }
        Object t = null;
        // 头节点删除
        if (index == 0){
            t = head.t;
            head = head.next;
            this.size --;
            return t;
        }

        // 找到要删除节点的前一个节点 和 后一个节点
        Node preNode = this.head;
        Node nextNode = this.head;
        int preIndex = index -1;
        for (int i = 0; i < index + 1; i++) {
            if (i < preIndex){
                preNode = preNode.next;
            }

            if (i == preIndex){
                nextNode = preNode;
                nextNode = nextNode .next;
                t = nextNode.t;
            }

            if (i == preIndex + 1){
                nextNode = nextNode.next;
            }
        }
        preNode.next = nextNode;
        this.size -- ;
        return t;
    }

指定位置删除的关键点逻辑是,将当前节点的前一个节点指向当前节点的下一个节点

在这里插入图片描述

删除指定元素
 /**
     * 删除指定元素
     * @param t
     */
    public void remove(T t){
        if (head == null){
            System.out.println("无元素可删除");
            return;
        }

        // 如何解决head不断重复的问题
        while (head != null && t.equals(head.t)) {
            head = head.next;
            this.size -- ;
        }

        if (head == null){
            System.out.println("无元素可删除");
            return;
        }

        Node currNode = head;
        while (currNode.next != null){
            if (currNode.next.t.equals(t)){
                currNode.next = currNode.next.next;
                this.size --;
            }else {
                currNode = currNode.next;
            }
        }
    }

删除指定元素与删除指定位置的数据的区别就在于如何定位到数据。

以上就是链表的插入和删除操作,为了进一步深入链表的使用,我洗的了一个基于链表实现的lru算法,链表中存入最近使用的10个元素。

/**
 *
 * @author wengyz
 * @version LRUUtil.java, v 0.1 2020-02-09 16:38
 */
public class LRUUtil {

    public static volatile Linked<String> list = new Linked<String>();

    /**
     * lru算法添加
     * @param t
     */
    public static void add(String t){
        // 删除指定元素
        if (list.getSize() != 0){
            list.remove(t);
        }
        // 判断容量,假设只能存10个,删除最后一个元素
        if (list.getSize() == 10){
            list.delect(9);
        }
        // 将当前元素添加到最前面
        list.addFirst(t);
    }

    /**
     * lru使用
     * @param t
     */
    public static void use(String t){
        add(t);
    }
}

总结

本文主要分析了链表结构,写了一些链表的插入和删除demo,最后写了一个基于链表的lru算法。

扫码关注个人公众号

在这里插入图片描述

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值