拨开链表迷雾
链表是基础的数据结构之一,和数组一样基础,提到链表我们总会联想到数组结构,最顺嘴的一句话便是数组适合查询,链表适合插入,但是这句话其实说的太过于简单,以至于就不是那么准确了,我们来细细分析下这句话。
数组适合查询?
数组适合查询这句话其实准确说应该是数组基于下标查询效率较高,时间复杂度是O(1),如果用其值去数组中查询,效率也是不高的,时间复杂度和链表一样,是O(n),所以我们在使用数组结构时,要学会利用其下标。
数组不适合写入?
数组不适合写入的原因有两个,第一是数组的内存分配,第二是数组的动态扩容需要对数据进行复制和移动。数组一但初始化内存大小就确定,可以联想数组的length,数据动态扩容需要对数组重新分配内存,将数据重新复制到新的内存里,所以数组的动态扩容是不适合写的根本原因。
链表适合写入?
链表适合写入最大的原因是链表并不需要连续的内存,而且链表的插入也不需要数据复制来复制去,链表中节点的连接是通过指针实现的。
所以单链表的插入只要找到要插入节点的前一个节点,只需要如下操作即可:
- node3.next -> node2
- node1.next -> node3
所以这么看来链表数据的插入根本不需要数据的复制,所以这才是链表适合插入的根本原因。
链表不适合查询?
这一点是毫无疑问的,因为链表没有像数组的索引的一个东西,所以无论是通过索引还是值在链表中查询都需要去遍历链表,时间复杂度是O(n)。
综上所有,数组适合查询,链表适合插入已经分析清楚了,数组和链表优点的优越性脱离条件没有任何意义。
遇见链表
上面已经分析了链表的优点和缺点,接下来我们来通过代码来遇见链表吧。
首先我来看一个最简单的单链表
public class Linked<T> {
private class Node<T> {
public T t;
public Node next;
public Node(T t) {
this(t,null);
}
public Node(T t,Node next) {
this.t = t;
this.next = next;
}
}
private Node head;
private int size;
public Linked() {
this.head = null;
this.size = 0;
}
}
这个链表暂时没有任何方法,只是内部有一个节点的内部类,然后两个成员变量,一个head,一个size。而内部类node也很简单,一个泛型代表节点内容,一个自身引用作为next,对于这个node类可以这样理解
前面我们也分析了链表是适合写的一个数据结构,那么接下来我们通过代码来看下链表的写入和删除。对于链表的插入和删除我一共设计了如下几个方法:
- addFirst 链表头部插入
- addLast 链表尾部插入
- add 指定位置插入
- delect 指定位置删除
- remove 删除指定元素
链表头部插入
/**
* 链表头部添加元素
* @param t
*/
public void addFirst(T t){
Node<T> node = new Node<T>(t);
// 将新节点的next指向原来的头节点 newNode.next -> head
node.next = this.head;
// 将新节点赋值给头节点 newNode -> oldHead ->
this.head = node;
this.size ++;
}
其实写链表的代码一个关键点是注意指针不要丢失,我在写链表时一般遵循一下两个步骤:
- 创建一个节点
- 将当前节点的next指向head
- 将当前节点赋值给head
指定位置插入
/**
* 指定位置插入
* @param t
* @param index
*/
public void add(T t,int index){
if (index < 0 || index > size){
throw new IllegalArgumentException("index error");
}
if (index == 0){
this.addFirst(t);
return;
}
Node preNode = this.head;
// 找到要插入的前一个节点
for (int i = 0; i < index - 1; i++) {
preNode = preNode.next;
}
//将链表链上
Node node = new Node(t);
// node - > next
node.next = preNode.next;
// pre - > node - > next
preNode.next = node;
this.size ++;
}
指定位置插入按照如下步骤:
- 找到指定位置的前一个节点
- 将当前节点指向前一个节点的下一个节点
- 将前一个节点指向当前节点
链表尾部插入
/**
* 链表尾部添加元素
* @param t
*/
public void addLast(T t){
this.add(t,this.size);
}
指定位置删除
/**
* 指定位置删除
* @param index
* @return
*/
public Object delect(int index){
if (index < 0 || index > size){
throw new IllegalArgumentException("index error");
}
Object t = null;
// 头节点删除
if (index == 0){
t = head.t;
head = head.next;
this.size --;
return t;
}
// 找到要删除节点的前一个节点 和 后一个节点
Node preNode = this.head;
Node nextNode = this.head;
int preIndex = index -1;
for (int i = 0; i < index + 1; i++) {
if (i < preIndex){
preNode = preNode.next;
}
if (i == preIndex){
nextNode = preNode;
nextNode = nextNode .next;
t = nextNode.t;
}
if (i == preIndex + 1){
nextNode = nextNode.next;
}
}
preNode.next = nextNode;
this.size -- ;
return t;
}
指定位置删除的关键点逻辑是,将当前节点的前一个节点指向当前节点的下一个节点
删除指定元素
/**
* 删除指定元素
* @param t
*/
public void remove(T t){
if (head == null){
System.out.println("无元素可删除");
return;
}
// 如何解决head不断重复的问题
while (head != null && t.equals(head.t)) {
head = head.next;
this.size -- ;
}
if (head == null){
System.out.println("无元素可删除");
return;
}
Node currNode = head;
while (currNode.next != null){
if (currNode.next.t.equals(t)){
currNode.next = currNode.next.next;
this.size --;
}else {
currNode = currNode.next;
}
}
}
删除指定元素与删除指定位置的数据的区别就在于如何定位到数据。
以上就是链表的插入和删除操作,为了进一步深入链表的使用,我洗的了一个基于链表实现的lru算法,链表中存入最近使用的10个元素。
/**
*
* @author wengyz
* @version LRUUtil.java, v 0.1 2020-02-09 16:38
*/
public class LRUUtil {
public static volatile Linked<String> list = new Linked<String>();
/**
* lru算法添加
* @param t
*/
public static void add(String t){
// 删除指定元素
if (list.getSize() != 0){
list.remove(t);
}
// 判断容量,假设只能存10个,删除最后一个元素
if (list.getSize() == 10){
list.delect(9);
}
// 将当前元素添加到最前面
list.addFirst(t);
}
/**
* lru使用
* @param t
*/
public static void use(String t){
add(t);
}
}
总结
本文主要分析了链表结构,写了一些链表的插入和删除demo,最后写了一个基于链表的lru算法。