ex3.m及ex3_nn.m

ex3.m文件包含逻辑回归的正则化练习,涉及到lrCostFunction.m、oneVsAll.m和predictOneVsAll.m等函数。predict.m用于在ex3_nn.m中利用训练好的神经网络进行手写数字识别,它使用Theta1和Theta2参数。
摘要由CSDN通过智能技术生成

ex3是逻辑回归的正则化相关的练习,文档里面多了一个fmincg的函数

[X, fX, i] = fmincg(f, X, options, P1, P2, P3, P4, P5)
%输入中的f是返回的代价函数及grad矢量
%输入中的X是初始化的theta
%输入的options是用于可选择的迭代数用options = optimset('GradObj', 'on', 'MaxIter', 要选择的迭代数);来指代
%输出中的X是对应的theta值,fx是返回的函数值,i是迭代数
%如果只输出一个输出值,则指输出对应theta值

lrCostFunction.m

function [J, grad] = lrCostFunction(theta, X, y, lambda)
%LRCOSTFUNCTION Compute cost and gradient for logistic regression with 
%regularization
%   J = LRCOSTFUNCTION(theta, X, y, lambda) computes the cost of using
%   theta as the parameter for regularized logistic regression and the
%   gradient of the cost w.r.t. to the parameters. 

% Initialize some useful values
m = length(y); % number of training examples

% You need to return the following variables correctly 
J = 0;
grad = zeros(size(theta));

% ====================== YOUR CODE HERE ======================
% Instructions: Compute the cost of a particular choice of theta.
%               You should set J to the cost.
%               Compute the partial derivatives and set grad to the partial
%               derivatives of the cost w.r.t. each parameter in theta
%
% Hint: The computation of the cost function and gradients can be
%       efficiently vectorized. For example, consider the computation
%
%           sigmoid(X * theta)
%
%       Each row of the resulting matrix will contain the value of the
%       prediction for that example. You can make use of this to vectorize
%       the cost function and gradient computations. 
%
% Hint: When computing the gradient of the regularized cost function, 
%       there're many possible vectorized solutions, but one solution
%       looks like:
%           grad = (unregularized gradient for logistic regression)
%           temp = theta; 
%           temp(1) = 0;   % because we don't add anything for j = 0  
%           grad = grad + YOUR_CODE_HERE (using the temp variable)
%
h=sigmoid(X * theta);
J=-(y'*log(h)+(1-y)'*log(1-h))/m+lambda
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值