大数据分析Python NumPy库使用教程

  NumPy(Numerical Python) 是 Python 语言的一个扩展程序库,支持大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库。

  NumPy 的前身 Numeric 最早是由 Jim Hugunin 与其它协作者共同开发,2005 年,Travis Oliphant 在 Numeric 中结合了另一个同性质的程序库 Numarray 的特色,并加入了其它扩展而开发了 NumPy。NumPy 为开放源代码并且由许多协作者共同维护开发。

  NumPy 是一个运行速度非常快的数学库,主要用于数组计算,包含:

  1)一个强大的N维数组对象 ndarray

  2)广播功能函数

  3)整合 C/C++/Fortran 代码的工具

  4)线性代数、傅里叶变换、随机数生成等功能

  对于数据工程师而言,Python编程是一项关键技能。在处理数据时,有一个功能强大的库可以极大地提高代码的效率,尤其是在处理大型数据集时:NumPy。

  

大数据分析Python NumPy库

 

  这就是为什么我们增加了一个用于数据工程师NumPy的过程中我们的数据工程路径!

  目前,这是我们数据工程专业课程中的关于算法复杂性的课程。

  我将在大数据分析Python NumPy库使用教程中学到什么?

  大数据分析Python NumPy库使用教程为数据工程师提供有关NumPy的从零开始的培训。这意味着您不需要具有NumPy的任何经验,也不会浪费任何时间学习与数据工程工作无关的东西。

  在浏览了基础知识之后,您将快速开始使用NumPy来构建和操作二维和三维数组。掌握阵列将使您能够一次对大量数据进行计算,而不必逐行循环,从而节省了时间和处理能力。

  随着课程深入NumPy的更高级应用程序,您还将学习如何评估内存使用情况,并且将了解NumPy的局限性。这为我们的数据工程师之路的下一课程提供了很好的入门:处理Pandas中的大数据集。

  在这两门课程结束时,您将能够使用Python技能以及NumPy和Pandas的新知识来处理和处理庞大的数据集,这要比普通Python高效得多。

  当然,您将在我们的交互式浏览器平台中完成所有这些工作。您将使用真实数据并编写和运行真实代码,而不必担心下载数据集,安装库或任何其他麻烦。

  为什么数据工程师需要学习NumPy?

  NumPy是Python中用于数据工作的最受欢迎,功能最强大的库之一。实际上,它是如此强大,以至于Pandas(最流行的Python数据科学库)依赖并利用了一些NumPy功能。

  从数据工程师的角度来看,NumPy的主要优势在于它使您可以使用数组进行向量化数学。这种方法比一次遍历数据集的每一行执行计算要有效得多。

  与“普通” Python相比,NumPy中的数组操作所提供的效率对数据工程师而言尤其重要,因为数据工程师通常要处理大量数据并要求尽快处理数据。

  准备开始学习NumPy了吗?咨询在线小姐姐要试听课程!

 

摘自:https://www.aaa-cg.com.cn/data/2424.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值