RNN求解优化问题——日程安排和资源分配

本文探讨了递归神经网络(RNN)在解决优化问题,如日程安排和资源分配中的应用。介绍了LSTM、Attention Network和Pointer Network的结构及工作原理,并通过Pointer Network的代码实现展示了其在排序问题上的优势,实验结果显示Pointer Network在收敛速度和准确性上优于其他模型。
摘要由CSDN通过智能技术生成

递归神经网络:

神经网络可以分为前馈神经网络递归神经网络

前馈神经网络和递归神经网络的最大区别是,神经元的连接是否形成了闭环。前馈神经网络的信息流向只有从输入层到输出层一个方向。相反,递归神经网络依靠神经元之间的有向环实现记忆功能。

优化问题和时间序列问题一般来说采用递归神经网络解决。

最常用的递归神经网络结构是1997年由德国人Hochreiter和Schmidhuber提出的Long-Short-Term-Memory (LSTM)。这种结构在每次递归中直接应用记忆数据,使得记忆数据在多重神经元层的反向传播中不至于失真(参考多伦多大学讲义)。在LSTM的内部结构中通过input gate/output gate/forget gate, etc. 实现输入数据和记忆数据的相加而非相乘。

图片来源

抽象为数学建模:

在 t 时间的输入: x t x^t xt

N: LSTM神经元个数

M: 输入维度

脚注i, o, f, z:input gate, output gate, forget gate, block

需要训练的参数为:

输入weight: W z , W i , W f , W o ∈ R N × M W_z, W_i, W_f, W_o \in \mathcal{R}^{N \times M} Wz,Wi,Wf,WoRN×M

递归weight: R z , R i , R f , R o ∈ R N × N R_z, R_i, R_f, R_o \in \mathcal{R}^{N \times N} Rz,Ri,Rf,RoRN×N

bias: b z , b i , b f , b o ∈ R N b_z, b_i, b_f, b_o \in \mathcal{R}^N bz,bi,bf,boRN

公式为:

输入 z t = σ ( W z x t + R z y t − 1 + b z ) z^t = \sigma \big( W_z x^t + R_z y^{t-1} + b_z \big) zt=σ(Wzxt+Rzyt1+bz)

input gate i t = σ ( W i x t + R i y t − 1 + b i ) i^t = \sigma \big( W_i x^t + R_i y^{t-1} + b_i \big) it=σ(Wixt+Riyt1+bi)

forget gate f t = σ ( W f x t + R f y t − 1 + b f ) f^t = \sigma \big( W_f x^t + R_f y^{t-1} + b_f \big) ft=σ(Wfxt+Rfyt1+

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值