用开源求解器和Pyomo实现灵活的项目计划

本文介绍了一个基于Pyomo和开源求解器的项目排程程序,旨在解决多人、多场景的活动排程问题,考虑了活动依赖、资源匹配和优先级。优化目标为最大化满足用户优先级,同时支持灵活的排程策略。程序接受excel或txt输入,输出排程结果和资源占用情况。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一个可以实现多人、自定义项目活动和资源的最优化job shop排程程序。优化目标简化为最大化满足用户排程优先级和时间窗要求,并且支持自定义的目标权重,而不是直接最小化计划总用时。

程序使用开源求解器和建模工具,支持excel或txt表格形式的标准化输入和输出。

业务需求示例

业务需要同时计划多个项目多个站点的共M个活动。站点共有K种场景,每种场景对应一种活动流。每种活动流可以包含不同数目的活动,并且可以定义不同活动间的各种依赖关系(父项-子项可以为多对多的关系)。

另外规定了每种活动对应的资源类型以及对不同资源的不同占用时间。活动和资源间的对应关系也可以是多对多的关系。

资源的容量可以设置上限(比如每人在同一时间段最多可以处理h个活动)。

业务要求所有活动的计划总用时尽量小。在满足先后依赖关系的前提下可以尽量早排或尽量晚排所有活动。

输入格式

输入参数包括:

  • planHorizon计划时长。比如如果以天为单位计划全年项目,可以设置planHorizon=365。
  • planStrategy排程策略。如果设为"earliest",则靠前的排程得分高,程序会倾向于把活动尽量靠前排。如果设为"latest"则相反。

routing:活动依赖关系

示例:
在这里插入图片描述
用数据表示:

task_idx post_task_idx interval
task0 task1 2
task1 task3 1
task2 task3 1
task3 task4 1
task4 task6 1
task5 task6 1
task6 taskEnd 1

resource:每项活动占用的资源,以活动ID为行,资源ID为列的透视表格

hierarchy:项目和场景的从属关系

一个项目可以包含多种场景,每种场景可以有多个重复的实例(比如同一个客户项目,场景为新建的有100个,场景为改造的有50个,等等)。如果设置了不同的优先级,优先级值越高,越会在排程中靠前排序。

cost:资源信息

数据检查、优化目标和约束

  1. 检查资源的最大容量是否能够满足所有活动的资源需求(可以设置multiplier,使资源容量大于几倍资源需求,保证解的可行性)。

  2. 排程优化会使用以下硬性约束(i.e.如果不能满足,就没有优化结果):

    • 每个活动/资源对都必须满足resource表格里定义的资源消耗(活动所需时长)
    • 每个活动只能开始一次
    • 每个资源的单位时间消耗都必须在上限或以下
    • 活动必须满足routing表格里定义的先后依赖关系
    • 相邻活动间必须满足routing表格里定义的interval长度
  3. 排程优化目标:

    • 最大化客户给定的排序优先级

建模简述

决策变量

定义活动数为M,计划时间段为T,先后依赖关系个数为N,资源个数为R。

决策变量是维度为(M, T)的0/1矩阵x,取值为1的位置是每个活动的开始时间,所以x的每行只能有一个1。

约束

1… 保证x的每行只有一个1:

∑ t T x m t = = 1 , m ∈ 0 , 1 , ⋯   , M \sum_t^T x_{mt}==1, m \in {0,1,\cdots,M} tTxmt==1,m0,1,,M

2… 保证每个活动的结束时间都在计划时间段的范围内:

根据每个活动占用资源的最长时间 t m a x t_{max} tmax,设置x的每行最后 t m a x − 1 t_{max}-1 tmax1个值为0。

3… 建立先后依赖关系:

1). 处理routing中的数据:通过 Job.createTaskDependency 函数,在 DataProblem.precedenceRulesPos, DataProblem.precedenceRulesNeg 两个矩阵中分别存储父项和子项活动。两个矩阵的维度为(N,M), N为先后依赖关系的个数,M为活动个数,前一个矩阵的取值是0/1,后一个矩阵的取值是0/-1。 另外这个函数还计算了依赖关系中父项的时长:

d u r a t i o n n = m a x r ( r e s o u r c e T b l m r ) + i n t e r v a l n duration_n = max_r(resourceTbl_{mr}) + interval_n durationn=maxr(resourceTblmr)+intervaln,其中m为父项index;数组interval是父项和子项间的间隔时间,维度为(N,)。

2). 生成符合各种活动用时的duration矩阵:通过 DataProblem.createResourceRequirement 函数生成多个durationTbl,每个矩阵维度为 (T,T),每一列数据代表时间线上的一个可能的时间段,数值为1的位置为“占用”,0为“空闲”。每个durationTbl代表一种占用时长(比如如果占用时长为2天, d u r a t i o n T b l 2 durationTbl_2 durationTbl2的每列都会有两个数值为1的位置。

3). 计算占用时长:定义活动对资源占用的矩阵为resourceTbl, 维度为(M,R),M为活动个数,R为资源个数。取值为一对活动-资源对的占用时长。

计算约束时,用到两种占用时长。

以资源角度计算的占用时长resourceUsed是维度为(R,T)的矩阵,R为资源个数,T为计划时段。每个值为1的位置对应资源被“占用”,值为0对应“空闲”。每行代表所有活动对这个资源在各个时间点的占用情况:

r e s o u r c e U s e d r t = ∑ m M ∑ j T d u r a t i o n T b l r e s o u r c e T b l r m , t , j ∗ x m j resourceUsed_{rt} = \sum_m^M \sum_j^T durationTbl_{resourceTbl_{rm},t,j} * x_{mj} resourceUsedrt=mMjTdurationTblresourceTblrm,t,jxmj,其中durationTbl选择对应resourceTbl_{rm}的取值。

以活动角度计算的占用时长,用于安排有依赖关系的活动之间的间隔。

首先把先后依赖关系中的父项起始时间转化成时间跨度:

<think>嗯,用户想学习如何用Python进行电力系统的优化,需要入门教程示例代码。首先,我得理解用户的具体需求。电力系统优化涉及很多方面,比如经济调度、潮流计算、稳定性分析等。用户可能刚开始接触这个领域,所以需要基础的入门资料。 先回忆一下系统级指令。用户要求回答结构清晰,分步骤解决问题,确保真实可靠。还要注意引用相关的资料。根据提供的引用,特别是引用[1]提到的PyOptInterface,这是一个Python优化建模工具,可能适合推荐给用户。还有引用[4]提到MATLAB的优化调度模型,但用户需要Python,所以可能需要转换或找到Python对应的库。 接下来,用户可能需要了解电力系统优化的基本流程。通常包括问题定义、数学建模、选择求解器实现算法结果分析。所以回答的结构可以按照这个步骤来组织。 然后,Python相关的库有哪些呢?除了PyOptInterface,还有Pyomo、Pulp、Pandas、PYPOWER、SciPy这些。需要列出这些库并简要说明用途,比如Pyomo适合复杂优化问题,Pulp适合线性规划,Pandas处理数据,PYPOWER处理潮流计算等。 示例代码部分,可能需要一个简单的经济调度问题。比如使用Pyomo来建模,设定发电成本的最小化目标,添加发电约束,然后用求解器求解。代码要简洁易懂,注释清楚,方便用户理解。 此外,用户可能需要进一步的问题,比如如何处理非线性约束,如何与仿真工具结合,或者实际项目案例。根据引用[2][4],可以推荐相关的数据集项目,比如微网故障检测的数据集Simulink模型,以及考虑频率-惯量约束的优化调度模型。 还要确保使用正确的LaTeX格式,行内公式用$...$,独立公式用$$...$$,并检查语法正确。比如在数学模型中,目标函数约束条件需要用LaTeX表达,比如$C_{total} = \sum_{i=1}^n (a_i P_i^2 + b_i P_i + c_i)$。 最后,生成相关问题,引导用户深入学习,比如优化建模工具的选择、处理潮流计算的方法、结合机器学习等。这些问题应该覆盖用户可能感兴趣的后续步骤。 总结一下,回答的结构应该是先介绍步骤,然后推荐工具库,接着给出示例代码,再提供学习资源项目案例,最后生成相关问题。需要确保每个部分都引用正确的资料,比如PyOptInterface引用[^1],数据集引用[^2],优化调度模型引用[^4]等。同时保持语言口语化,自然流畅,避免使用Markdown格式,符合用户的要求。</think>根据您对电力系统优化的需求,结合Python技术栈特点,建议按照以下步骤开展学习: 一、电力系统优化基本流程 1. 问题定义:明确优化目标(如经济调度$C_{total} = \sum_{i=1}^n (a_i P_i^2 + b_i P_i + c_i)$)、约束条件(如功率平衡$\sum P_i = P_{load}$) 2. 数学建模:构建混合整数规划、非线性规划等数学模型 3. 求解器选择:调用CPLEX、Gurobi等商业求解器或CBC、IPOPT等开源求解器 4. 算法实现:编写优化逻辑与系统约束 5. 结果分析:验证方案可行性并进行灵敏度分析 二、Python核心工具库 1. 优化建模:PyOptInterface(支持高效模型构建与求解器交互)[^1] 2. 数学计算:Pyomo/Pulp(代数建模库) 3. 数据处理:Pandas/Numpy 4. 潮流计算:PYPOWER/Pandapower 5. 数值计算:SciPy 三、示例代码(经济调度问题) ```python from pyomo.environ import * # 建立模型 model = ConcreteModel() # 定义机组参数 model.P_min = Param(initialize=50) # 最小出力$P_{min}$ model.P_max = Param(initialize=200) # 最大出力$P_{max}$ model.a = Param(initialize=0.01) # 成本系数$a_i$ # 决策变量 model.P = Var(within=NonNegativeReals) # 目标函数:最小化发电成本 model.cost = Objective(expr=model.a * model.P**2 + 100*model.P) # 添加约束 model.power_balance = Constraint(expr=model.P == 150) # 负荷需求$P_{load}=150$MW # 求解 solver = SolverFactory('ipopt') results = solver.solve(model) print("最优出力:", value(model.P)) ``` 四、学习资源推荐 1. 开源项目:微网故障检测数据集可作为优化约束条件输入 2. 进阶案例:参考频率-惯量安全约束调度模型的数学建模思路 3. 工具文档:PyOptInterface官方文档(支持与Gurobi等求解器无缝对接)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值