傅里叶变换和小波变换:时间序列异常检测

时间序列的聚类是高维度聚类(每个时间点作为一个维度出现)。所以很少使用经典聚类方法比如KMEANS。

最简单的时间序列特征是时域上以不同时间单位聚合作为特征。比如30天数据以日为单位,生成30维特征。最简单的聚类方法是直接以每个零售商各维度的特征为vector,用Euclidean distance为距离聚类。

这种方法的缺点是不考虑时域信号的位移信息:比如两家零售商在不同日期出现异常激活信号,用简单的聚类方法并不能把这两种信号归类为一类。在零售商数量多并且信号波形有很大差异时,这种方法会造成类别过多或完全不能区分正常和异常信号。

同样基于时域特征的相似性分析方法如动态时间归正(dynamic time warping, DTW)可以弥补欧几里得距离的缺陷,消除时域位移的影响。但是所有基于时域的特征提取都有维度过高和数据稀疏的缺点。尤其当业务关注的时间单位在小时级甚至以下,时域的特征个数和稀疏度会增加计算难度和影响聚类效果。

另一种提取时间序列特征的方法是通过频域变换,提取时间序列在频域的特征。频域特征可以降低特征空间的维度,使特征更集中。由于数据是离散采样数据,一般采用离散傅里叶变换或离散小波变换。

参考

[1] 高维稀疏向量聚类的挑战
[2] 不同时域和频域特征提取方法对比

傅里叶变换

傅里叶变换可以将时域信号转化为频域信号。在频域里,可以对信号使用比时域更简单的运算,比如滤波。

数字信号处理中常用的离散傅里叶变换DFT,是在离散信号的基础上使用傅里叶变换:

任何复数序列 { x n } : = x 0 , x 1 , ⋯   , x N − 1 \big\{ x_n \big\}:= x_0, x_1, \cdots, x_{N-1} { xn}:=x0,x1,,xN1 都可以通过公式:

X k = ∑ n = 0 N − 1 x n ⋅ e − 2 π i N k n = ∑ n = 0 N − 1 x n ⋅ [ c o s ( 2 π k n / N ) − i ⋅ s i n ( 2 π k n / N ) ] ( 1 ) \mathbf{X_k} = \sum_{n=0}^{N-1} x_n \cdot e^{- \frac{2 \pi i}{N}kn } = \sum_{n=0}{N-1} x_n \cdot [ cos(2\pi kn/N) - i \cdot sin(2\pi kn/N) ] \quad (1) Xk=n=0N1xneN2πikn=n=0N1xn[cos(2πkn/N)isin(2πkn/N)](1)

转化为新的序列 { X k } : = X 0 , X 1 , ⋯   , X N − 1 \big\{ \mathbf{X_k} \big\} := \mathbf{X_0}, \mathbf{X_1}, \cdots, \mathbf{X_{N-1}} { Xk}:=X0,X1,,XN1

其中公式(1)也可以表示成 X = F { x } \mathbf{X} = \mathcal{F} \big\{ x \big\} X=F{ x}

形象地说,DFT相当于把时域信号中的频率信息分别提取出来。

通常如果时域信号的频率特征不随时间变化而变化,可以使用DFT对时域信号作分解,经过滤波降噪后的信号(相当于降维)表示原始的时域信号。

对于在时域中有明显位置信息的信号波形(频域特征随时间有变化),采用傅里叶变换并不能识别时域的位置信息,造成提取后的特征信息丢失。

参考
[3] 傅里叶变换
[4] 图片来源

小波变换

另一种将时域信号转换为频域信号提取特征的方法是小波变换(wavelet transform)。选取小波变换而非傅里叶变换的主要原因是小波变换的基小波在时域有衰减,可以更好保留时域的位置信息,反映频域随时间的变化。

f ( t ) = 1 M ∑ k W ϕ ( 0 , k ) ϕ 0 , k ( t ) + 1 M ∑ j = 0 ∞ ∑ k W ψ ( j , k ) ψ j , k ( t ) ( 2 ) f(t) = \cfrac{1}{\sqrt{M}} \sum_{k} W_{\phi}(0,k) \phi_{0,k}(t) + \cfrac{1}{\sqrt{M}} \sum_{j=0}^{\infty} \sum_{k} W_{\psi}(j,k) \psi_{j,k}(t) \quad (2) f(t)=M 1kWϕ(0,k)ϕ

  • 6
    点赞
  • 69
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
### 回答1: 傅立叶变换是一种常用的数学工具,用来将连续函数转化为其谱(即频谱)的表达式。它能够将一个时间序列转化为一组复数,每一个复数表示该时间序列中对应频率的幅度和相位。因此,傅立叶变换可以用来分析时间序列中不同频率分量的变化情况。 小波变换是一种类似傅立叶变换的数学工具,它也可以将时间序列转化为频谱表达式。与傅立叶变换不同的是,小波变换是非常精细的,能够将信号的不同频带细分成若干个小的子带。因此,小波变换比傅立叶变换更适用于分析高频信号。 适用条件方面,傅立叶变换适用于连续函数,而小波变换则适用于连续和离散信号。此外,小波变换还有一个优点是,它能够很好地处理信号中的瞬时变化和突发事件。 ### 回答2: 傅立叶变换是一种将时域信号转换为频域信号的数学技术。它的特点是具有线性、频域分辨率高、适用于周期和非周期信号的特点。傅立叶变换可以将一个信号分解为一系列复指数函数的叠加,而每个复指数函数都对应着不同的频率和幅度。傅立叶变换广泛应用于信号处理、图像处理、通信系统等领域。它可以将信号的不同频率成分分离出来,从而实现滤波、频谱分析等功能。 小波变换是一种用于时间-频率分析的数学工具。它的特点是具有局部性、时频分辨率高、能够很好地处理非平稳信号的特点。小波变换通过不同大小和不同性质的小波基函数对信号进行分析,从而得到信号在时域和频域上的表示。小波变换可以将信号的局部特征分离出来,从而实现信号去噪、信号检测等功能。小波变换广泛应用于图像处理、音频处理、压缩编码等领域。 傅立叶变换适用于周期信号和非周期信号,但对于非平稳信号的分析能力有限。而小波变换适用于非平稳信号的分析,可以捕捉信号的时频特性,但对于周期信号的频谱分辨率较低。 综上所述,傅立叶变换和小波变换都是用于信号分析的重要数学工具。傅立叶变换适用于周期和非周期信号的频谱分析,而小波变换适用于非平稳信号的时频分析。在实际应用中,需要根据信号的特性选择适合的变换方法。 ### 回答3: 傅立叶变换是一种将一个连续时间域信号转换为频域表示的数学工具。它的特点是能够将一个信号分解成许多不同频率的正弦和余弦函数。傅立叶变换的适用条件是信号是周期性的,并且可以在无限时间范围内进行测量。 小波变换是一种将信号从时域转换为时频域的方法。与傅立叶变换不同,小波变换能够提供更多的信息,因为它可以对信号的频率和时间信息进行同时分析。小波变换的特点是可以提供信号的局部特征,对于时域上具有不同频率和幅度的瞬时事件具有较好的描述能力。小波变换的适用条件是信号是非周期性的,并且对于不同时间尺度上的瞬时变化具有较好的检测能力。 傅立叶变换适用于分析周期性信号的频域特征,例如音频信号、周期性振动等。傅立叶变换的局限性在于它对于非周期性和突发性事件无法提供更详细的信息,且无法检测出时域上的局部特征。 小波变换适用于非周期性和突发性事件的分析,例如瞬态信号、突发事件等。小波变换通过选择合适的小波函数,可以提供信号的时域和频域特征,适应不同时间尺度上的瞬时变化。小波变换的局限性在于对于周期性信号的频谱分析能力较弱,且计算复杂性相对较高。 综上所述,傅立叶变换和小波变换都具有自己独特的特点和适用条件。选择适当的变换方法取决于信号的特性以及我们希望从中获取的信息。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值