kalman滤波算法理解

kalman算法

kalman滤波器论文《A New Approach to Linear Filtering and Prediction Problems》,有时间可以看一下。

kalman滤波的定义:

卡尔曼滤波的一个典型实例是从一组有限的,包含噪声的,对物体位置的观察序列(可能有偏差)预测出物体的位置的坐标及速度。在很多工程应用(如雷达、计算机视觉)中都可以找到它的身影。同时,卡尔曼滤波也是控制理论以及控制系统工程中的一个重要课题。例如,对于雷达来说,人们感兴趣的是其能够跟踪目标。但目标的位置、速度、加速度的测量值往往在任何时候都有噪声。卡尔曼滤波利用目标的动态信息,设法去掉噪声的影响,得到一个关于目标位置的好的估计。这个估计可以是对当前目标位置的估计(滤波),也可以是对于将来位置的估计(预测),也可以是对过去位置的估计(插值或平滑)。

我目前应用到的是对一个时间观测序列进行平滑。也就是对过去位置的估计。用于目标物体轨迹的跟踪。
因为最基础的kalman filter是线性滤波器,并且使用的参数有些提前的设置,所以kalman filter是有使用条件的。还有一些kalman filter的变种。我只用到了基础的就可以满足我的应用场景。

kalman的最中心的思想是,使用系统内部预测值,和实际观测值来计算出一个最优的值(这些值在已有的参数设置下是最少噪声的,因为难以做到完全去除。)

那么如何使用两个已经有的值去计算最优值,一般想到的就是这两个值得加权平均。这个权,表示哪个更加重要,哪个貌似噪音更少,就对最优结果更有贡献力。

下面是kalman的5个公式,可以分为两部分:
看不下去

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值