错误“no module named ‘onnx.onnx_cpp2py_export‘”的一个解决方法

错误描述:

在导入onnx(import onnx)时代码报错,目前原因还未知(等有空了研究下)。

解决方案:

我的onnx版本时1.12,将其卸载,重新安装为1.10.0,就可以了。具体代码如下:
pip uninstall onnx
pip uninstall numpy
pip install onnx==1.10.0
<think>好的,用户遇到了ModuleNotFoundError,提示缺少'torch.onnx._internal.exporter._diagnostic'模块。首先,我需要确定这个错误的原因。根据之前的引用,比如用户提到过ModuleNotFoundError: No module named ‘torch._six’,而解决方案是不降级torch版本。类似的问题可能出现在不同模块,但解决方法可能有共通之处。 首先,考虑模块路径变化。PyTorch在版本更新中可能重构了内部模块的结构,导致旧代码中的导入路径失效。例如,torch.onnx的内部结构可能发生了变化,_internal.exporter._diagnostic可能被移动到其他位置或者被重命名。因此,用户需要检查当前使用的PyTorch版本是否与代码兼容。 接下来,升级PyTorch版本可能是一个解决方案。如果用户当前使用的是较旧的版本,升级到最新版可能会包含所需的模块。但用户之前提到不希望降级,所以需要确认升级是否可行,或者是否有其他兼容性问题。 另外,检查导入语句是否正确也很重要。用户可能引用了非公开的API,这些API在版本更新中可能被移除或修改。PyTorch的文档或GitHub的issue中可能有相关信息,说明该模块是否已被弃用,并推荐替代的导入方式。 此外,安装依赖项是否完整?比如,用户之前遇到的typing_extensions缺失问题,可能需要安装额外的包。虽然当前错误不是这个,但确保所有依赖项正确安装也是必要的步骤。 最后,如果模块确实已被移除,可能需要修改代码,使用新的API替代旧的导入路径。查看PyTorch的官方文档或更新日志,找到对应的替代方法,并调整代码中的导入语句和调用方式。 总结可能的解决方案步骤:1. 升级PyTorch到最新版本;2. 检查导入路径是否正确;3. 查阅官方文档寻找替代API;4. 确保依赖项安装完整。同时,用户需要注意内部API的不稳定性,尽量使用公开接口以避免类似问题。</think>### ModuleNotFoundError: No module named 'torch.onnx._internal.exporter._diagnostic' 解决方案 #### 原因分析 该错误通常由以下三种情况导致: 1. **PyTorch版本不兼容**:`torch.onnx._internal`属于内部模块,不同版本可能发生路径变更或功能迁移 2. **API变更**:PyTorch 2.x版本对ONNX导出模块进行了重构,原路径可能已失效 3. **依赖缺失**:特殊功能模块需要额外依赖支持 #### 分步解决方案 **第一步:检查PyTorch版本** ```bash pip show torch ``` - 若版本低于2.0,需升级: ```bash pip install --upgrade torch ``` **第二步:验证新版API路径** PyTorch 2.0+版本中,ONNX诊断模块路径已调整为: $$ \text{torch.onnx.diagnostics} $$ 尝试使用新导入方式: ```python from torch.onnx import diagnostics ``` **第三步:安装必要依赖** ```bash pip install typing-extensions onnx ``` **第四步:代码适配示例** 原代码可能包含: ```python from torch.onnx._internal.exporter import _diagnostic ``` 应修改为: ```python from torch.onnx.diagnostics import infra # 使用示例 diag_ctx = infra.DiagnosticContext("custom_domain", "1.0") ``` #### 补充说明 1. 内部模块(含`_internal`或`_`前缀)属于非稳定API,建议优先使用官方文档中的公开接口[^1] 2. ONNX导出推荐使用官方示例模板: ```python torch.onnx.export(model, args, "model.onnx", input_names=["input"], output_names=["output"], dynamic_axes={"input": {0: "batch_size"}, "output": {0: "batch_size"}}) ```
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值