poj1659 Frogs' Neighborhood (Havel-Hakimi定理可图化判定)

Frogs' Neighborhood
Time Limit: 5000MS Memory Limit: 10000K
Total Submissions: 8667 Accepted: 3654 Special Judge

Description

未名湖附近共有N个大小湖泊L1L2, ..., Ln(其中包括未名湖),每个湖泊Li里住着一只青蛙Fi(1 ≤ i ≤ N)。如果湖泊LiLj之间有水路相连,则青蛙FiFj互称为邻居。现在已知每只青蛙的邻居数目x1x2, ..., xn,请你给出每两个湖泊之间的相连关系。

Input

第一行是测试数据的组数T(0 ≤ T ≤ 20)。每组数据包括两行,第一行是整数N(2 < N < 10),第二行是N个整数,x1x2,..., xn(0 ≤ xi ≤ N)。

Output

对输入的每组测试数据,如果不存在可能的相连关系,输出"NO"。否则输出"YES",并用N×N的矩阵表示湖泊间的相邻关系,即如果湖泊i与湖泊j之间有水路相连,则第i行的第j个数字为1,否则为0。每两个数字之间输出一个空格。如果存在多种可能,只需给出一种符合条件的情形。相邻两组测试数据之间输出一个空行。

Sample Input

3
7
4 3 1 5 4 2 1 
6
4 3 1 4 2 0 
6
2 3 1 1 2 1 

Sample Output

YES
0 1 0 1 1 0 1 
1 0 0 1 1 0 0 
0 0 0 1 0 0 0 
1 1 1 0 1 1 0 
1 1 0 1 0 1 0 
0 0 0 1 1 0 0 
1 0 0 0 0 0 0 

NO

YES
0 1 0 0 1 0 
1 0 0 1 1 0 
0 0 0 0 0 1 
0 1 0 0 0 0 
1 1 0 0 0 0 
0 0 1 0 0 0 

Source

[Submit]   [Go Back]   [Status]   [Discuss]

解析:以下摘自百度百科:

给定一个非负整数序列{dn},若存在一个无向图使得图中各点的度与此序列一一对应,则称此序列可图化。进一步,若图为简单图,则称此序列可简单图化
可图化的判定:d1+d2+……dn=0(mod 2)。关于具体图的构造,我们可以简单地把奇数度的点配对,剩下的全部搞成自环。
可简单图化的判定(Havel定理):把序列排成不增序,即d1>=d2>=……>=dn,则d可简单图化当且仅当d’={d2-1,d3-1,……d(d1+1)-1, d(d1+2),d(d1+3),……dn}可简单图化。简单的说,把d排序后,找出度最大的点(设度为d1),把它与度次大的d1个点之间连边,然后这个点就可以不管了,一直继续这个过程,直到建出完整的图,或出现负度等明显不合理的情况。

代码:

#include<cstdio>
#include<cstring>
#include<algorithm>
#define ms0(a) memset(a,0,sizeof(a))
using namespace std;

const int maxn=10;
int n;
bool f[maxn+10][maxn+10];
struct tnode{
	int x,y;
}p[maxn+10];

bool cmp_p(tnode a,tnode b)
{
  return a.x>b.x;
}

bool ok()
{
  int i;
  while(p[1].x)
    {
      for(i=1;i<=p[1].x;i++)
        {
          if(p[1+i].x==0)return 0;
          p[1+i].x--;
          f[p[1].y][p[1+i].y]=1;
          f[p[1+i].y][p[1].y]=1;
		}
	  p[1].x=0;
	  sort(p+1,p+n+1,cmp_p);
	}
  return 1;
}

int main()
{
  int t,i,j;
  scanf("%d",&t);
  while(t--)
    {
      scanf("%d",&n);
      for(i=1;i<=n;i++)
	    scanf("%d",&p[i].x),p[i].y=i;
	  sort(p+1,p+n+1,cmp_p),ms0(f);
	  if(!ok())printf("NO\n");
	  else
	    {
	      printf("YES\n");
	      for(i=1;i<=n;i++)
	        {
	          for(j=1;j<n;j++)printf("%d ",f[i][j]);
	          printf("%d\n",f[i][n]);
			}
		}
	  if(t>0)printf("\n");
	}
  return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值