http://www.cnblogs.com/huangshiyu13/p/6217180.html
http://blog.csdn.net/jzwong/article/details/72823493
Zipf分布是一种符合长尾的分布:
就是指尾巴很长的分布。那么尾巴很长很厚的分布有什么特殊的呢?有两方面:一方面,这种分布会使得你的采样不准,估值不准,因为尾部占了很大部分。另一方面,尾部的数据少,人们对它的了解就少,那么如果它是有害的,那么它的破坏力就非常大,因为人们对它的预防措施和经验比较少。也要所谓的二八法则。
http://www.cnblogs.com/huangshiyu13/p/6217180.html
Zipf分布是一种符合长尾的分布:
就是指尾巴很长的分布。那么尾巴很长很厚的分布有什么特殊的呢?有两方面:一方面,这种分布会使得你的采样不准,估值不准,因为尾部占了很大部分。另一方面,尾部的数据少,人们对它的了解就少,那么如果它是有害的,那么它的破坏力就非常大,因为人们对它的预防措施和经验比较少。也要所谓的二八法则。
Zipf分布是一种符合长尾的分布:
就是指尾巴很长的分布。那么尾巴很长很厚的分布有什么特殊的呢?有两方面:一方面,这种分布会使得你的采样不准,估值不准,因为尾部占了很大部分。另一方面,尾部的数据少,人们对它的了解就少,那么如果它是有害的,那么它的破坏力就非常大,因为人们对它的预防措施和经验比较少。也要所谓的二八法则。
Zipf分布是一种符合长尾的分布:
就是指尾巴很长的分布。那么尾巴很长很厚的分布有什么特殊的呢?有两方面:一方面,这种分布会使得你的采样不准,估值不准,因为尾部占了很大部分。另一方面,尾部的数据少,人们对它的了解就少,那么如果它是有害的,那么它的破坏力就非常大,因为人们对它的预防措施和经验比较少。也要所谓的二八法则。
对数拉普拉斯分布是其对数具有拉普拉斯分布的随机变量的概率分布。
其中μ为位置参数,b>0是尺度参数。与正态分布对比,正态分布是用相对于μ平均值的差的平方来表示,而拉普拉斯概率密度用相对于差的绝对值来表示。因此,拉普拉斯分布的尾部比正态分布更加平坦。
%% laplace distribution
% x : variable
% b : size para
%miu: location para
syms x b miu
fx = 1 / (2*b) * exp( -abs(x-miu)/b );
fx = subs(fx, {miu,b}, {0,5});
res = double(int(fx, x, -5, 5));
xx = -10:.1:10;
fx = double(subs( fx, x, xx ));
plot(xx, fx)