LOG(拉普拉斯高斯函数)缘分天空(数学的魅力)

曾经,高数学的还行。

毕业很多年,有一种强迫症,遇到和微积分有关的话题,都会想起一个公式,并证明他,来验证父母掏的学费是否打了水漂。

计算机专业毕业后,有近十年,都不曾用到计算机和高数,曾想,估计,这辈子糟蹋了所受教育,知识和实际太遥远了。

时不时,感到编程手生,这个公式很陌生,证明不了,我都怀疑曾经证明过他,或许对你来说,就是一个很普通的高数课本上的习题,但我和这道习题的缘分没有终结,请看高数习题:

请证明:\frac{\partial^2 f}{\partial x^2}+\frac{\partial^2 f}{\partial y^2}=g''(r)+g'(r)*1/r

(x,y)!=(0,0),f(x,y)=g(r),r*r=x*x+y*y;g(r)有二阶导数

现在搭眼一看,这不就是拉普拉斯高斯函数LOG吗?我们前面的博文刚刚找过真正的LOG函数。

g''(r)与\frac{\partial^2 f}{\partial x^2}+\frac{\partial^2 f}{\partial y^2}相差一个-1/sigma^{2}*exp(-0.5*(r^{2})/sigma^{2})。

那么g'(r)*1/r=-1/sigma^{2}*exp(-0.5*(r^{2})/sigma^{2})吗?

g'(r)=-r/sigma^{2}*exp(-0.5*(r^{2})/sigma^{2}

g'(r)*1/r=-1/sigma^{2}*exp(-0.5*(r^{2})/sigma^{2}

果然,\frac{\partial^2 f}{\partial x^2}+\frac{\partial^2 f}{\partial y^2}=g''(r)+g'(r)*1/r

从学习那一刻起,到今天计算机视觉中应用他,竟然跨度20年,匪夷所思,更匪夷所思的是,如果没有踏进计算机视觉领域,这辈子,或许都不会用它,因此,这是庆幸的,所以,这真是缘分天空!

注,那时,并不知道g(r)是正态分布函数(高斯函数),也不知道什么拉普拉斯。

但是这里的g(r)并非指高斯函数,公式仍然成立,LOG只不过是他的一个特例,也可以是其他有二阶导数的函数,比如g(r)=r*r+5.

已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页