中国剩余定理笔记与模板

22 篇文章 0 订阅
9 篇文章 0 订阅

中国剩余定理

结论

方程组 x ≡ c i ( m o d m i ) ( i = 1 , 2 , 3 , … , n ) x \equiv c_i \pmod{m_i} \quad (i=1, 2, 3, \ldots, n) xci(modmi)(i=1,2,3,,n).其中 m i m_i mi[两两互质]{.underline}。

中国剩余定理是说,这样的线性同余方程组的通解是 x = x 0 + M t ,   t ∈ Z x=x_0+Mt, \, t \in Z x=x0+Mt,tZ.其中 M = ∏ i = 1 n m i M=\prod\limits_{i=1}^{n}m_i M=i=1nmi,即所有模数的乘积; x 0 = ( ∑ i = 1 n c i M i M i m i − 1 )   m o d   M x_0={ \left( \sum\limits_{i=1}^{n} c_i M_i {M_i}_{m_i}^{-1} \right) \bmod M } x0=(i=1nciMiMimi1)modM.其中 M i = M m i M_i=\frac{M}{m_i} Mi=miM,即 M i M_i Mi是除掉第 i i i个模数 m i m_i mi之外所有模数的积; M i m i − 1 {M_i}_{m_i}^{-1} Mimi1 M i M_i Mi关于模数 m i m_i mi的逆元。显然模M意义下,解有且只有一个,即 x 0 x_0 x0

证明

只需要证明下面三个子命题,就可以得到通解必须是上面的所述。

  1. 证明 x 0 x_0 x0是一个特解。
  2. 所有解都可以表示成 x 0 + M t x_0+Mt x0+Mt
子命题1的证明

对于第 i i i个方程 x ≡ c i ( m o d m i ) x \equiv c_i \pmod{m_i} xci(modmi),求和式 x 0 = ( ∑ j = 1 n c j M j M j m j − 1 )   m o d   M x_0 = \left( \sum\limits_{j=1}^{n} c_j M_j {M_j}_{m_j}^{-1} \right) \bmod M x0=(j=1ncjMjMjmj1)modM(为了避免歧义,把求和式中的枚举下标换成j了)。

  1. j = i j=i j=i,则 c j M j M j m j − 1   m o d   m i = c i   m o d   m i c_j M_j {M_j}_{m_j}^{-1} \bmod m_i = c_i \bmod m_i cjMjMjmj1modmi=cimodmi.因为 M j m j − 1 {M_j}_{m_j}^{-1} Mjmj1就是 M j M_j Mj在模 m j m_j mj意义下的逆元,当你计算他们的乘积模 m j m_j mj时,自然等于1了。
  2. j ≠ i j \neq i j̸=i,而 M j M_j Mj是除了 m j m_j mj之外所有模数的乘积,自然含有因数 m i m_i mi了,因此, c j M j M j m j − 1   m o d   m i = 0 c_j M_j {M_j}_{m_j}^{-1} \bmod m_i = 0 cjMjMjmj1modmi=0
    所以这个求和式在模 m i m_i mi意义下只有第 i i i项有贡献,且贡献恰好是 c i c_i ci.因此,满足第 i i i个方程,由于 i i i是任意的,所以 x 0 x_0 x0满足所有方程,是方程组的一个特解。
子命题2的证明

假设有一个解 x 1 x_1 x1
则显然有 x 1 − x 0 ≡ 0 ( m o d m i ) ( i = 1 , 2 , 3 , … , n ) x_1-x_0 \equiv 0 \pmod{m_i} \quad (i=1, 2, 3, \ldots, n) x1x00(modmi)(i=1,2,3,,n).
因此 x 1 − x 0 = l c m ( m 1 , m 2 , m 3 , … , m n ) × t = M t ( t ∈ Z ) x_1-x_0=lcm(m_1,m_2,m_3,\ldots,m_n) \times t=Mt \quad (t \in Z) x1x0=lcm(m1,m2,m3,,mn)×t=Mt(tZ).
于是任意解都可以表示成 x 0 + M t x_0+Mt x0+Mt的形式。

Code

// m两两互质
// 当模数是long long的时候,两个数相乘要用__int128
// 当模数是__int128的时候,使用ex_gcd解线性同余方程组或者使用快速模乘防止爆__int128
bool chinese_remainder_theory(int n, ll c[], ll m[], ll &x, ll &k) {
	ll &M = k;
	ll Mi, inv_Mi;
	__int128 t;
	M = 1; x = 0;
	for (int i= 0; i < n; ++i) M *= m[i];
	for (int i = 0; i < n; ++i) {
		Mi = M/m[i];
		multiplicative_inverse(Mi,m[i],inv_Mi); // 肯定存在
		t = c[i]%M;
		t = t*Mi%M;
		t = t*inv_Mi%M; // 防止爆long long
		x = (x+(ll)t)%M;
	}
	return true;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值