深度学习
文章平均质量分 80
雪中奇侠
微电子科学与工程 硕士
展开
-
卷积神经网络加速器设计与优化实验(一)
本系列主要用高层次综合的方法复现了赛灵思和北京高能效研究所推出的神经网络加速器优化过程,并做了笔记和记录。神经网络加速器设计与优化实验课程录播领域专用架构设计(Domain-specific Architecture DSA)根据应用的计算,访存特性设计专用的硬件架构。提升性能能效。面向一类应用而不是某一个特定的应用(ASIC)。机器学习应用的神经网络加速器,图像处理GPU。DSA的优势更加合理高效的并行方案访存带宽的专门优化数值精度的合理选取领域专用的编程语言。原创 2023-03-27 14:43:03 · 504 阅读 · 0 评论 -
VGG16 keras框架 猫狗识别【使用预训练的卷积神经网络】
想要将深度学习应用在小型数据集,一种高效的方法是使用预训练的网络。预训练的网络是之前保存好的网络,之前大型数据集(通常是大规模图像分类任务)上训练好。如果这个原始数据集足够大且足够通用,那么预训练的网络学到的特征的空间层次结构,可以有效的作为视觉世界的通用模型,因此这些模型可以用于各种不同的计算机视觉问题。使用预训练网络有两种方法:特征提取和微调模型。原创 2022-12-26 20:32:33 · 977 阅读 · 0 评论 -
使用keras框架进行猫狗分类
数据增强是从现有的训练样本中生成更多的训练数据,其方法是利用多种能生产可信图像的随机变换来增加数据内容,从而具有泛化能力。但是这里处理的是更大的图像,需要相应的增加网络,即再增加一个Conv2D+MaxPooling2D的组合,这可以增加网络尺寸,降低特征图大小,使其连接Flatten时候尺寸不会太大。它生成了150x150的RGB图像[形状为(20,150,150,3)]与二进制标签形状为【20,】组成的批量,生成器会不断生成这些批量,会不断循环目标文件夹的图像。创建数据集,验证集,和测试集。原创 2022-12-23 07:54:51 · 550 阅读 · 0 评论 -
使用keras框架构建电影评论分类(二分类问题)
二分类问题可能是应用最广泛的机器学习问题。接下来这个例子就是将电影评论划分为正面和负面。原创 2022-12-16 10:55:14 · 243 阅读 · 0 评论 -
基于Kera框架的手写数字识别
20行代码实现手写数字识别功能以及使用卷积神经网络对其进行优化原创 2022-12-14 09:53:18 · 274 阅读 · 0 评论