卷积神经网络加速器设计与优化实验(一)

本文档介绍了使用高层次综合方法在FPGA上实现和优化神经网络加速器的过程,重点关注深度学习应用。内容涵盖DSA设计的优势,如并行方案、访存优化和数值精度选择,以及FPGA的灵活性和能效。讨论了卷积神经网络的基本运算和推理阶段,包括卷积、全连接、激活和池化等算子,并强调了加速器的延迟、能效比和稳定性等关键指标。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一.前言

本系列主要用高层次综合的方法复现了赛灵思和北京高能效研究所推出的神经网络加速器优化过程,并做了笔记和记录。
神经网络加速器设计与优化实验课程录播

二.实验介绍

  • 领域专用架构设计(Domain-specific Architecture DSA)
    • 根据应用的计算,访存特性设计专用的硬件架构。
    • 提升性能能效。
    • 面向一类应用而不是某一个特定的应用(ASIC)。
    • 机器学习应用的神经网络加速器,图像处理GPU。
  • DSA的优势
    • 更加合理高效的并行方案
    • 访存带宽的专门优化
    • 数值精度的合理选取
    • 领域专用的编程语言
  • 目标领域 - 深度学习
    • 计算量大,高度并发,模式简单,应用广泛
  • 目标平台 FPGA
    • 高灵活度,开发周期短,能效高。

三.神经网络进程与介绍

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

雪中奇侠

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值